Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы исследования дисперсных систем




Методы исследования дисперсных систем (определение размера, формы и заряда частиц) основаны на изучении их особых свойств, обусловленных гетерогенностью и дисперсностью, в частности оптических.

Коллоидные растворы обладают оптическими свойствами, отличающими их от настоящих растворов, – они поглощают и рассеивают проходящий через них свет. При боковом рассматривании дисперсной системы, через которую проходит узкий световой луч, внутри раствора на темном фоне виден светящийся голубоватый так называемый конус Тиндаля (рис. 3). То же самое происходит, когда мы замечаем в пыльной комнате светлую полосу солнечного света из окна. Это явление называется опалесценцией.

Рис.3. Эффект Тиндаля (опалесценция)

Рассеяние света возможно, если размер коллоидной частицы меньше длины волны проходящего света и показатели преломления дисперсной фазы и дисперсионной среды различны. Размеры коллоидных частиц меньше длин волн видимой части спектра (примерно 0,1–0,2 длины волны света), и поглощенная световая энергия вновь испускается частицами в различных направлениях, что проявляется в рассеивании света. Интенсивность светорассеяния резко увеличивается с уменьшением длины световой волны.

Конус Тиндаля тем ярче, чем выше концентрация и больше размер частиц. Интенсивность светорассеяния усиливается при коротковолновом излучении и при значительном отличии показателей преломления дисперсной и дисперсионной фаз. С уменьшением диаметра частиц максимум поглощения смещается в коротковолновую часть спектра, и высокодисперсные системы рассеивают более короткие световые волны и поэтому имеют голубоватую окраску. На спектрах рассеяния света основаны методы определения размера и формы частиц.

Размеры частиц золей обычно равны 10–3–10–5 мм, что позволяет им участвовать в броуновском движении – непрерывном беспорядочном перемещении мельчайших частиц в жидкости или газе.

Броуновское движение можно наблюдать при помощи микроскопа. Частица перемещается из-за различного числа одновременных ударов неодинаковой силы молекулами дисперсионной среды (рис.4).

Рис.4.Перемещение частицы в дисперсионной среде

Частицы дисперсных систем имеют различные размеры, и их распределение по размерам описывается кривыми, похожими на кривые распределения молекул газа по энергиям и скоростям. Распределение частиц дисперсной фазы по размерам показано на рис.5.

Рис.5. Кривая распределения частиц дисперсной фазы по размерам и ее построение

На оси абсцисс откладывают размер частиц а, на оси ординат – долю частиц q/ a, имеющих данный размер а. Подобного типа кривые могут быть симметричными, несимметричными (как на рис.5) и даже с несколькими максимумами.

Броуновское движение препятствует седиментации (оседанию) частиц под действием силы тяжести и является одной из причин устойчивости дисперсных систем. Благодаря броуновскому движению частицы в зависимости от их массы (и плотности) распределяются в поле тяготения по высоте
(рис.6). Такое распределение частиц называется седиментационным равновесием. Оно обнаруживается в жидких и воздушных средах. Внизу сосуда с жидкостью или водоема скапливаются частицы с большей массой.

Рис.6. Седиментационное равновесие

После выведения системы из седиментационного равновесия перемешиванием через некоторое время она снова возвратится в исходное состояние. Скорость установления седиментационного равновесия невысока, и оно может наступить через несколько дней, но затем будет сохраняться, пока не произойдет разрушения золя.




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1002; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.