Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обозначим




Решение начальных задач для дифференциальных уравнений.

Основные свойства преобразования Лапласа.

1. Свойство линейности:

,

где - любые комплексные числа; - изображения оригиналов .

2. Свойство подобия:

.

3. Свойство запаздывания:

.

4. Свойство смещения:

.

5. Дифференцируемость оригинала:

(26)

В формулах (16) предполагается, что функции являются функциями конечного роста.

6. Дифференцируемость изображения:

7. Интегрирование оригинала:

.

8. Интегрирование изображения:

,

при условии, что сходится.


 

Таблица преобразований Лапласа

 
 
 
 
 
 
 
 
 
 
 
 
13
 
 

Примечание: - действительная часть комплексного числа; - мнимая часть.

 

Для изображения получаем

. Для изображения получаем

Домашнее задание:

Получите изображения функций

Решите начальные задачи:

где

.

 

Учтем, что,

 

Поэтому

 

Графическое представление вычислительных операций приведено на рисунке.

Стрелочками представлены множители

.

Отсчеты S0, S1, S2, S3 получаются с использованием операции сложения, поэтому около них стоит знак “ + “, отсчеты S4, S5, S6, S7 находятся после выполнения операции вычитания и около них поставлен знак “ - “.

 

Подсчитаем количество операций умножения, которые нужно выполнить, используя алгоритм БПФ.

 

Номер шага разбиения Количество умножений на постоянный коэффициент Количество блоков ДПФ, подлежащих дальнейшему разбиению Вид последовательности на входах оставшихся блоков
  N / 2   N / 2
  2 (N / 4) = N / 2   N / 4
  4 (N / 8) = N / 2   N / 8
. . . . . .   . . . . . .  
M -1 N / 2 2 M -1 N / 2 M -1 = 2
M N / 2 - -

 

На каждом шаге разбиения выполняется N / 2 умножений, количество шагов равно M = log 2 N.

Следовательно, количество умножений равно (N / 2) log2 N вместо N2 при ДПФ.

Величина выигрыша при переходе от ДПФ к БПФ увеличивается с увеличением количества отсчетов N.

 

4.4. Алгоритм БПФ с прореживанием по частоте

 

Пусть имеется исходная N - точечная последовательность xn, где N = 2M. Разобьем члены этой последовательности на две группы. В первую включим первую половину членов исходной последовательности, а во вторую группу - вторую половину. Из первой группы образуем последовательность x1m, а из второй - последовательность x2m.

Индексы последовательностей xn и x1m связаны соотношением n = m, а индексы последовательностей xn и x2m - соотношением n = N/ 2 + m.

Тогда




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.