Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 2.3 Тепловые сети и их элементы




Составление полной (развернутой) тепловой схемы

Она включает все тепловое оборудование (как основное, так и резервное), трубопроводы всех видов, соединяющие все элементы станции, всю запорную и регулирующую арматуру.

Задачи:

-выбор схемы главных трубопроводов, их диаметра и количества параллельных линий, расстановка на них запорной и регулирующей арматур (паропроводы от ПК до турбины, паропроводы регенеративных отборов от турбины до регенеративных подогревателей и до внешних потребителей, трубопровод питательной воды от деаэратора до питательного насоса и ПК);

-выбор схемы вспомогательных трубопроводов (все дренажные, продувочные, трубопроводы добавочной воды, обратной сетевой воды, циркуляционной воды)

-выбор пусковых схем и трубопроводов, позволяющих обеспечить пуск паротурбинной установки из холодного состояния.

Системы теплоснабжения. Классификация систем теплоснабжения.

Различают два вида теплоснабжения – централизованное и децентрализованное. При децентрализованном теплоснабжении источник и потребитель тепла находятся близко друг от друга. Тепловая сеть отсутствует. Децентрализованное теплоснабжение разделяют на местное (теплоснабжение от местной котельной) и индивидуальное (печное, теплоснабжение от котлов в квартирах).

В зависимости от степени централизации системы централизованного теплоснабжения (ЦТС) можно разделить на четыре группы:

1. групповое теплоснабжение (ТС) группы зданий;

2. районное – ТС городского района;

3. городское – ТС города;

4. межгородское – ТС нескольких городов.

Процесс ЦТС состоит из трех операций – подготовка теплоносителя (ТН), транспорт ТН и использование ТН.

Подготовка ТН осуществляется на теплоприготовительных установках ТЭЦ и котельных. Транспорт ТН осуществляется по тепловым сетям. Использование ТН осуществляется на теплоиспользующих установках потребителей.

Комплекс установок, предназначенных для подготовки, транспорта и использования теплоносителя называется системой централизованного теплоснабжения.

Различают две основные категории потребления тепла.

1. Для создания комфортных условий труда и быта (коммунально-бытовая нагрузка). Сюда относят потребление воды на отопление, вентиляцию, горячее водоснабжение (ГВС), кондиционирование.

2. Для выпуска продукции заданного качества (технологическая нагрузка).

По уровню температуры тепло подразделяется на:

- низкопотенциальное, с температурой до 150 0С;

- среднепотенциальное, с температурой от 150 0С до 400 0С;

- высокопотенциальное, с температурой выше 400 0С.

Коммунально-бытовая нагрузка относится к низкопотенциальным процессам. Максимальная температура в тепловых сетях не превышает 150 0С (в прямом трубопроводе), минимальная – 70 0С (в обратном). Для покрытия технологической нагрузки как правило применяется водяной пар с давлением до 1,4 МПа.

В качестве источников тепла применяются теплоподготовительные установки ТЭЦ и котельных. На ТЭЦ осуществляется комбинированная выработка тепла и электроэнергии на основе теплофикационного цикла. Раздельная выработка тепла и электроэнергии осуществляется в котельных и на конденсационных электростанциях. При комбинированной выработке суммарный расход топлива ниже, чем при раздельной.

Весь комплекс оборудования ис­точника теплоснабжения, тепловых сетей и абонентских установок на­зывается системой централи­зованного теплоснабже­ния.

Системы теплоснабжения клас­сифицируются по типу источника теплоты (или способу приготовле­ния теплоты), роду теплоносителя, способу подачи воды на горячее водоснабжение, числу трубопрово­дов тепловой сети, способу обеспе­чения потребителей, степени цент­рализации.

По типу источника теплоты раз­личают три вида теплоснабжения:

централизованное теплоснабже­ние от ТЭЦ, называемое тепло­фикацией;

централизованное теплоснабже­ние от районных или промышлен­ных котельных;

децентрализованное теплоснаб­жение от местных котельных или индивидуальных отопительных аг­регатов.

По сравнению с централизован­ным теплоснабжением от котель­ных теплофикация имеет ряд пре­имуществ, которые выражаются в экономии топлива за счет комбини­рованной выработки тепловой и электрической энергии на ТЭЦ; в возможности широкого использова­ния местного низкосортного топли­ва, сжигание которого в котельных затруднительно; в улучшении сани­тарных условий и чистоты воздуш­ного бассейна городов и промыш­ленных районов благодаря концент­рации сжигания топлива в неболь­шом количестве пунктов, размещен­ных, как правило, на значительном расстоянии от жилых кварталов, и более рациональному использова­нию современных методов очистки дымовых газов от вредных при­месей.

По роду теплоносителя системы теплоснабжения разделяются на водяные и паровые. Паровые системы распространены в основ­ном на промышленных предприя­тиях, а водяные системы применя­ются для теплоснабжения жилищ­но-коммунального хозяйства и не­которых производственных потреби­телей. Объясняется это рядом пре­имуществ воды как теплоносителя по сравнению с паром: возмож­ностью центрального качественного регулирования тепловой нагрузки, меньшими энергетическими потеря­ми при транспортировке и большей дальностью теплоснабжения, отсут­ствием потерь конденсата греюще­го пара, большей комбинированной выработкой энергии на ТЭЦ, повы­шенной аккумулирующей способ­ностью.

По способу подачи воды на го­рячее водоснабжение водяные си­стемы делятся на закрытые и открытые.

В закрытых системах се­тевая вода используется только как теплоноситель и из системы не отбирается. В местные установки горячего водоснабжения поступает вода из питьевого водопровода, на­гретая в специальных водоводяных подогревателях за счет теплоты се­тевой воды.

В открытых системах се­тевая вода непосредственно посту­пает в местные установки горя­чего водоснабжения. При этом не требуются дополнительные тепло­обменники, что значительно упро­щает и удешевляет устройство або­нентского ввода. Однако потери воды в открытой системе резко возрастают (от 0,5—1 % до 20— 40 % общего расхода воды в систе­ме) и состав воды, подаваемой по­требителям, ухудшается из-за при­сутствия в ней продуктов коррозии и отсутствия биологической обра­ботки.

Достоинства закрытых систем теплоснабжения заключаются в том, что их применение обеспечи­вает стабильное качество горячей воды, поступающей в установки го­рячего водоснабжения, одинаковое с качеством водопроводной воды; гидравлическую изолированность воды, поступающей в установки го­рячего водоснабжения, от воды, циркулирующей в тепловой сети; простоту контроля герметичности системы по величине подпитки.

Основными недостатками закры­тых систем являются усложнение и удорожание оборудования и экс­плуатации абонентских вводов из-за установки водо-водяных подо­гревателей и коррозии местных установок горячего водоснабжения вследствие использования недеаэрированной воды.

Основные достоинства открытых систем теплоснабжения заключают­ся в возможности максимального использования низкопотенциальных источников теплоты для подогрева большого количества подпиточной воды. Поскольку в закрытых систе­мах подпитка не превышает 1 % расхода сетевой воды, возможность утилизации теплоты сбросной и продувочной воды на ТЭЦ с закры­той системой значительно ниже, чем в открытых системах. Кроме того, в местные установки горячего водоснабжения в открытых систе­мах поступает деаэрированная во­да, поэтому они меньше подвер­жены коррозии и более долго­вечны.

Недостатками открытых систем являются: необходимость устройст­ва на ТЭЦ мощной водоподготовки для подпитки тепловой сети, что удорожает станционную водоподготовку, особенно при повышенной жесткости исходной сырой воды; усложнение и увеличение объема санитарного контроля за системой; усложнение контроля герметичности системы (поскольку величина под­питки не характеризует плотность системы); нестабильность гидравли­ческого режима сети.

По числу трубопроводов разли­чают одно-, двух- и многотрубные системы. Причем для открытой си­стемы минимальное число трубо­проводов - один, а для закры­той - два. Самой простой и перс­пективной для транспортировки теплоты на большие расстояния яв­ляется однотрубная открытая си­стема теплоснабжения. Однако об­ласть применения таких систем ог­раничена в связи с тем, что ее реа­лизация возможна лишь при усло­вии равенства расхода воды, необ­ходимого для удовлетворения отопительно-вентиляционной нагруз­ки, расходу веды для горячего водоснабжения потребителей дан­ного района. Для большинства районов нашей страны расход воды на горячее водоснабжение значи­тельно меньше (в 3…4 раза) рас­хода сетевой воды на отопление и вентиляцию, поэтому в теплоснаб­жении городов преимущественное распространение получили двух­трубные системы. В двухтрубной системе тепловая сеть состоит из двух линий: подающей и обратной.

По способу обеспечения потре­бителей теплотой различают одно­ступенчатые и многоступенчатые системы теплоснабжения. В одноступенчатых системах потребители теплоты присоединяются к тепловым сетям непосредственно. Узлы присоединения потребителей к сети называются абонентскими вводами или местными теп­ловыми пунктами (МТП). На абонентском вводе каждого здания устанавливаются подогреватели горячего водоснабжения, элеваторы, насосы, контрольно-измерительные приборы и регулирующая армату­ра для изменения параметров теп­лоносителя в местных системах по­требителей.

В многоступенчатых системах между источником теплоты и по­требителями размещаются цент­ральные тепловые пункты или под­станции (ЦТП), в которых пара­метры теплоносителя изменяются в зависимости от расходования теп­лоты местными потребителями. На ЦТП размещаются центральная по­догревательная установка горячего водоснабжения, центральная смеси­тельная установка сетевой воды, подкачивающие насосы холодной водопроводной воды, авторегулирующие и контрольно-измеритель­ные приборы. Применение много­ступенчатых систем с ЦТП позво­ляет снизить начальные затраты на сооружение подогревательной ус­тановки горячего водоснабжения, насосных установок и авторегулирующйх устройств благодаря уве­личению их единичной мощности и сокращению числа элементов обо­рудования.

Оптимальная расчетная произ­водительность ЦТП зависит от планировки района, режима работы потребителей и определяется на ос­нове технико-экономических расче­тов.

По степени централизации теп­лоснабжение можно разделить на групповое - теплоснабжение группы зданий, районные – теплоснабжение нескольких групп зданий, городское – теплоснабжение нескольких районов, межгородское - теплоснабжение нескольких городов.

 

Потребители тепловой энергии, их характеристики, графики нагрузок. Регулирование отпуска теплоты с горячей водой. Коэффициент теплофикации ТЭЦ.

Тепловую нагрузку можно разделить на сезонную и круглогодичную. Изменение сезонной нагрузки зависит главным образом от климатических условий – температуры наружного воздуха, его влажности, скорости ветра, солнечной радиации и т.п. Основную роль играет изменение температуры наружного воздуха. Сезонная нагрузка имеет сравнительно постоянный суточный график и переменный годовой. К сезонной нагрузке относят нагрузки отопления, вентиляции (зимние нагрузки), кондиционирования (летняя нагрузка). К круглогодичной нагрузке относятся нагрузка горячего водоснабжения (ГВС) и технологическая нагрузка. График технологической нагрузки зависит от характера производства. График нагрузки ГВС зависит от благоустройства зданий, состава населения, графика рабочего дня, режима работы коммунальных предприятий. Технологическая и нагрузка ГВС слабо зависят от времени года.

 




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 2705; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.