Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Требования к материалам термоэлектродов и устройство ТЭП




Несмотря на то, что любые два проводника создают в паре между собой термоЭДС, лишь ограниченное число термоэлектродов используется для создания ТЭП.

К материалам термоэлектродов предъявляется ряд требований:

- однозначная и по возможности близкая к линейной зависимость термоЭДС от температуры, жаростойкость и механическая прочность с целью измерения высоких температур;

- химическая инертность;

- термоэлектрическая однородность материала проводника по длине, что позволяет восстанавливать рабочий спай без переградуировки, а также менять глубину его погружения;

- технологичность изготовления с целью получения взаимозаменяемых по термоэлектрическим свойствам материалов;

- дешевизна;

- стабильность и воспроизводимость термоэлектрических свойств, что позволяет создать стандартные градуировки. Ни один из существующих в настоящее время материалов не удовлетворяет полностью всем требованиям, в результате чего для различных пределов измерения используется термоэлектроды из различных материалов.

В настоящее время в РФ в основном применяются пять стандартных градуировок ТЭП, характеристики которых приведены в (Приложение В).

Для предохранения от механических повреждений и вредного влияния объекта измерения термоэлектроды преобразователя помещают в защитную арматуру.

На рисунке 14.135 а показано устройство стандартного термоэлектрического термометра.

В жесткой защитной гильзе 1 расположены термоэлектроды 3 с надетыми на них изоляционными бусами 4. Спай 2 касается дна защитной гильзы или может быть изолирован от него с помощью керамического наконечника. К термоэлектродам в головке 8 винтами 6 на розетке 5 подсоединяются удлинительные провода 7. Защитная гильза с содержимым вводится в объект измерения и крепится на нем с помощью штуцера 9. Для обеспечения надежного контактаспай 2 изготавливаютсваркой, реже пайкой или скруткой (для высокотемпературных ТЭП). Защитную гильзу 1 выполняют в виде цилиндриче­ской или конической труб­ки из газонепроницаемых материалов диаметром примерно 15—25 мм и длиной в зависимости от потребности объекта измерения от 100 до 2500 - 3500 мм. Материалом для защитной гильзы обычно служат различные стали. Для более высоких температур используются гильзы из тугоплавких термометров соединений, а также кварц и фарфор. Диаметр термоэлектродов составляет 2—3 мм, кроме термоэлектродов платиновой группы, диаметр которых 0,5 мм, что связано с их высокой стоимостью. Стандартные ТЭП выпускают одинарными, двойными и поверхностными - для измерения температуры стенок объекта, когда доступ внутрь объекта затруднителен или невозможен.

В настоящее время широкое применение находят термоэлектрические термометры кабельного типа (рисунок 14.135 б, в).

В тонкостенной оболочке 1 размещены термоэлектроды 3, изолированные друг от друга, а также от стенки оболочки термостойким керамическим порошком 4. Рабочий спай 2 может иметь контакт с оболочкой (рисунок 14.135 б) или изолируется от нее (рисунок 14.135 в). Оболочку выполняют из высоколегированной нержавеющей стали с наружным диаметром 0,5—6 мм, длиной 10—30 м. Благодаря указанным размерам кабельные термоэлектрические термометры являются весьма гибкими при достаточной механической прочности. Выпускаемые хромель-алюмелевые и хромель-копелевые кабельные термометры можно использовать в интервале температур от —50 до 300 °С при давлении 40 МПа. Внутрь оболочки кабеля помещены от одного до трех ТЭП.

Выбор соответствующей конструкции ТЭП осуществляют в зависимости от конкретных условий измерения из номенклатурных перечней заводов изготовителей.

 

 

Рисунок 14.135 - Конструкция термоэлектрических термометров

 

Динамическая характеристика термоэлектрических термометров в общем виде описывается передаточной функцией (14.59)

 

, (14.59)

 

Значения постоянной времени T и транспортного запаздывания зависят от конструктивных размеров и используемых материалов защитного чехла. Для выпускаемых в настоящее время термоэлектрических термометров эти величины находятся в преде­лах T=1,5 - 8 мин и =9 - 30 с, а ==0,11 - 0,78.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 629; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.