КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дома с многослойной изоляцией
Обогреть типовой двухэтажный дом, построенный с использованием традиционных материалов, возможно при мощности системы отопления не менее 30кВт (таблица 5.1).
Таблица 5.1 Теплопотери типового 2-этажного дома с мансардой общей площадью 205м2, утепленного в соответствии с прежними нормами, Вт
Требуемая мощность системы отопления для обогрева дома с современным уровнем теплозащиты может быть понижена до 15кВт (таблица 5.2). Из примера видно, что устройство хорошей теплозащиты позволяет экономить до 50% энергии, расходуемой на отопление. По этой причине целесообразность единовременного вложения средств в утепление дома не вызывает сомнений, в противном случае владельцу долгие годы придется обогревать не только свой дом, но и улицу.
Таблица 5.2 Теплопотери типового 2-этажного дома с мансардой общей площадью 205м2, утепленного в соответствии с новыми требованиями, Вт
Хорошее утепление дома важно не только с финансовой точки зрения. Уменьшение расхода сжигаемого топлива в 2 раза резко сокращает количество выбросов в атмосферу, поэтому повышение уровня теплозащиты жилых зданий позволяет существенно улучшить экологическую обстановку. Стены, кровля и окна называются наружными ограждающими конструкциями здания потому, что они ограждают жилище от различных атмосферных воздействий – низких температур, влаги, ветра, солнечной радиации. При образовании разности температур между внутренней и наружной поверхностями ограждения, в материале ограждения возникает тепловой поток, направленный в сторону понижения температуры. При этом ограждение оказывает большее или меньшее сопротивление Rl тепловому потоку. Конструкции с большим Rl имеют лучшую теплозащиту. Нормирование теплозащитных свойств наружных ограждений производится в соответствии со строительными нормами и с учетом средней температуры и продолжительности отопительного периода в районе строительства (таблица 5.3).
Таблица 5.3 Сопротивление теплопередаче Rl различных видов ограждающих конструкций
tB, tH – внутренняя и наружная температуры соответственно, 0С
Теплозащитные свойства стены зависят от ее толщины d и коэффициента теплопроводности материала l, из которого она построена. Если стена состоит из нескольких слоев (например, кирпич – утеплитель – кирпич), то ее термическое сопротивление будет зависеть от толщины di и коэффициента теплопроводности материала li каждого слоя. Способность материала проводить тепло характеризуется коэффициентом теплопроводности l. Чем хуже материал проводит тепло, тем ниже коэффициент l того материала (таблица 5.4).
Таблица 5.4 Коэффициенты теплопроводности l различных материалов
Теплозащитные свойства ограждающих конструкций сильно зависят от влажности материала. Подавляющее большинство строительных материалов содержит определенное количество мельчайших пор, которые в сухом состоянии заполнены воздухом. При повышении влажности поры заполняются влагой, коэффициент теплопроводности которой в 20 раз больше, чем у воздуха, что приводит к резкому снижению теплоизоляционных характеристик материалов и конструкций. Поэтому в процессе проектирования и строительства домов необходимо предусмотреть мероприятия, препятствующие увлажнению конструкций атмосферными осадками, грунтовыми водами и влагой, образующейся в результате конденсации водяных паров, диффундирующих через толщу ограждения. При эксплуатации домов, в результате воздействия внутренней и наружной среды на ограждающие конструкции, материалы находятся не в абсолютно сухом состоянии, а имеют несколько повышенную влажность. Это приводит к увеличению коэффициента теплопроводности материалов l и снижению их теплоизолирующей способности. Поэтому при оценке теплозащитных характеристик конструкций необходимо использовать реальное значение коэффициента теплопроводности в условиях эксплуатации, а не в сухом состоянии (таблица 5.5). Как известно, влагосодержание теплого внутреннего воздуха выше, чем холодного наружного. По этой причине диффузия водяных паров через толщу ограждения всегда происходит из теплого помещения в холодное. Если с наружной стороны ограждения расположен плотный материал, плохо пропускающий водяные пары, то часть влаги, не имея возможности выйти наружу, будет скапливаться в толще конструкции. Если у наружной поверхности расположен материал, не препятствующий диффузии водяных паров, то вся влага будет свободно удаляться из ограждения (рис. 5.1). Необходимо учитывать также тот факт, что однослойные стены толщиной 400-650 мм из кирпича, керамических камней, мелких блоков из ячеистого бетона или керамзитобетона обеспечивают сравнительно невысокий уровень теплозащиты (приблизительно в 3 раза меньше требуемой). Таблица 5.5 Коэффициенты теплопроводности l различных материалов
Рис. 5.1 Теплопотери и диффузия водяных паров через стенку
Высокими теплоизоляционными характеристиками, соответствующими современным требованиям, обладают трехслойные ограждающие конструкции, состоящие из внутренней и наружной стенок из кирпича или блоков, между которыми размещен слой теплоизоляционного материала. Внутренняя и наружная стенки, соединенные гибкими связями в виде арматурных стержней или каркасов, уложенных в горизонтальные швы кладки, обеспечивают прочность конструкции, а внутренний (утепляющий) слой – требуемые теплозащитные параметры. Толщина утепляющего слоя выбирается в зависимости от климатических условий и вида утеплителя (рис. 5.2). Из-за неоднородной структуры трехслойной стены и применения материалов с различными теплозащитными и пароизоляционными характеристиками в толще конструкции может образовываться конденсационная влага, наличие которой снижает теплоизоляционные свойства ограждения. Поэтому при возведении трехслойных стен следует предусмотреть их защиту от увлажнения (таблица 5.6).
Рис. 5.2 Трехслойные ограждающие конструкции 1 – наружная стена; 2 – утеплитель; 3 – внутренняя стена
Дата добавления: 2015-06-27; Просмотров: 347; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |