КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения. Транспортирование текучих сред (жидкостей и газов) по трубопроводам осуществляется с помощью нагнетательных устройств (насосов
Транспортирование текучих сред (жидкостей и газов) по трубопроводам осуществляется с помощью нагнетательных устройств (насосов, вентиляторов и т.п.). Для того, чтобы перемещать текучую среду, нагнетательное устройство должно затрачивать некоторую энергию. Оказывается, эта энергия зависит не только от физических свойств текучей среды, но и от характеристик трубопроводной системы. Эксплуатационные расходы энергии на транспортирование можно существенно сократить за счет выбора оптимальной геометрии трубопроводной системы, что может быть реализовано только после изучения основных закономерностей течения жидкостей и газов по трубопроводам. Поток жидкости либо газа можно характеризовать объемным расходом Q (м3/с) и средней по сечению трубы скоростью V (м/с). Расход является одной из основных характеристик потоков жидкости либо газа. Расходом называется количество жидкости или газа, которое перемещается через поперечное сечение трубопровода в единицу времени. Расход и скорость связаны между собой соотношением , где S - площадь поперечного сечения трубы (м 2). При движении реальных жидкостей и газов часть механической энергии движения необратимо превращается в тепловую. Эта часть энергии называется потерей энергии . Потери энергии обусловлены существованием сил вязкого трения в жидкостях и газах, т.е. вязкости. С потерями энергии связаны потери давления и потери напора , где - плотность жидкости либо газа; - ускорение свободного падения. Потери давления измеряются в Па, потери напора - в м. Существование сил вязкости приводит к затратам энергии на перемещение текучих сред. Часть мощности, затрачиваемая нагнетательным устройством на транспортирование по трубопроводу текучих сред с расходом Q, определяется выражением , Вт.
Гидравлические потери давления (напора) обычно делят на два вида. Первый вид представляет собой потери давления на трение D ртр при стабилизированном движении жидкости в длинных трубах. Эти потери равномерно распределяются по всей длине трубы. Потери второго вида (D рм) сосредоточены на сравнительно коротких участках трубопроводов и вызываются местными изменениями конфигурации канала. Эти сопротивления называются местными. Примерами местных сопротивлений могут служить участки резкого расширения и сужения трубопровода, места слияния и разделения потоков, различного рода трубопроводная аппаратура (вентили, клапаны, задвижки, дроссели и т.п.). Характерной особенностью движения жидкости через местные сопротивления является образование вихрей в потоке, что вызывает значительные потери энергии (давления, напора). Таким образом, полные потери давления и напора определяются выражениями: ;
.
Потери напора по длине для случая установившегося движения жидкости по трубопроводу круглого сечения определяются по формуле Дарси-Вейсбаха:
,
где l - коэффициент гидравлического трения (коэффициент потерь напора по длине); l - длина рассматриваемого участка трубы, м; d - диаметр трубопровода, м; V - средняя скорость движения жидкости, м/с. Из формулы видно, что величина потерь напора по длине возрастает с увеличением скорости потока, длины трубы и уменьшается с увеличением диаметра трубопровода. Местные потери определяются по формуле
,
где - коэффициент местного сопротивления. Коэффициент гидравлического трения l зависит от режима течения жидкости и шероховатости трубы. Эта зависимость называется законом сопротивления. Коэффициент местного сопротивления также зависит от режима течения и от вида и конструктивного исполнения местного сопротивления. Сравнительный анализ различных гидравлических сопротивлений показывает, что потери энергии значительно возрастают при резком изменении диаметра трубы, при резких поворотах и т.п. Значения коэффициентов сопротивления, как правило, определяются опытным путем и в обобщенном виде содержатся в справочниках в виде эмпирических формул, таблиц, графиков. В приложении к работе приведены некоторые данные по гидравлическим сопротивлениям. Основные методы снижения потерь энергии при транспортировании жидкостей и газов по сложным трубопроводам: использование труб с гладкой внутренней поверхностью; обеспечение плавных поворотов потока; устройство более плавного изменения поперечного сечения потока жидкости; устройство плавных входов и выходов из труб; разогрев при перекачивании высоковязких жидкостей; введение полимерных добавок в поток жидкости.
Дата добавления: 2015-06-27; Просмотров: 407; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |