Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дополнительные компоненты газовой смеси




Лечебные аэрозоли. Для некоторых больных целесо­образно вводить во вдыхаемую газовую смесь аэрозоли медикаментов, оказывающих местное терапевтическое дей­ствие. Наиболее часто применяются вещества, обладающие муколитическим (растворяющим слизь) или бронхолитическим (снимающим спазм гладкой мускулатуры бронхов и расширяющим их) действием. Значительно ре­же применяются антибактериальные (например, антибио­тики) или противовоспалительные (например, глюкокортикоиды) вещества, а также пеногасители (30 — 50% эти­ловый спирт).

Муколитические вещества способствуют значительному уменьшению вязкости и адгезивности мокроты и тем об­легчают ее откашливание или искусственную аспирацию. Их разделяют на «моющие» (детергенты) и ферментные средства. Основным веществом первой группы является гидрокарбонат натрия; его 1,5% раствор можно с успехом применять в виде аэрозоля. Среди ферментных аэрозолей наиболее распространены протеазы: ацетилцистеин, дезоксирибонуклеаза и трипсин, а также синтетические препараты на основе трипсина (химотрипсин и химопсин).

К числу активных бронхолитических средств относятся вещества, обладающие симпатомиметическим действием (адреналин, эфедрин, изадрин, новодрин и др.), некоторые холинолитики (атропин, платифиллин, скополамин), а так­же производные пурина (эуфиллин).

При назначении аэрозолей медикаментов не следует за­бывать о возможности их нежелательного местного и об­щего действия. Первое относится главным образом к фер­ментным муколитикам, способным нарушить нормальную функцию альвеол и слизистой оболочки бронхов. Второе больше относится к бронхоспазмолитикам, обычно оказы­вающим общее адренергическое действие. Не следует при­менять аэрозоли слишком долго вследствие предотвраще­ния их неблагоприятного действия и «привыкания» к ним. Правилом является также то, что никакие лекарственные аэрозоли не могут заменить эффективного увлажнения в процессе ИВЛ.

Техника применения аэрозолей при ИВЛ проста, если больного можно отключить от аппарата для проведения сеанса ингаляции. В этом случае используют практически любой ингалятор, в том числе и пневматический, напри­мер «Кислород-У-1» или «ИП-03».

Значительно сложнее вводить аэрозоли во вдыхаемую газовую смесь при непрерывной ИВЛ. В этом случае наи­более удобны ультразвуковые распылители, а также пнев­матические распылители УДС-1А, УДС-1У и распылители аппаратов «Спирон».

Продолжительность сеанса ингаляции 10 — 15 мин, ча­стота сеансов зависит от состояния легких и эффективно­сти аэрозольтерапии.

Аппараты ИВЛ типа «РО» нужно защищать от повреж­дения аэрозолями. Выдыхаемая влага и взвеси веществ, возвращаясь в линию выдоха аппарата, конденсируются и осаждаются по всему тракту. Опасность выхода из строя аппарата возникает при осаждении взвесей, особенно гидрокарбоната натрия, на поверхности переключающего зо­лотникового устройства. Во избежание подобных явлений можно рекомендовать на время вдувания аэрозолей ис­пользовать нереверсивный клапан, присоединяя его к трой­нику пациента.

Закись азота и другие анестетики. В ряде случаев при ИВЛ необходима длительная и стабильная анальгезия. Эффективным средством является закись азота, для по­дачи которой у ряда аппаратов типа «РО» и «Спирон» предусмотрен специальный ротаметр на дозиметрическом блоке. Не следует увеличивать концентрацию закиси азота более 75% во избежание ее недопустимо высокого увели­чения во вдыхаемой смеси, особенно при ИВЛ по ревер­сивному контуру.

В дыхательный газ можно ввести пары жидких анестетиков (фторотан, эфир). Для их дозирования у ряда ап­паратов имеются специальные испарители, а при их отсут­ствии аппарат ИВЛ можно соединить с аппаратом инга­ляционного наркоза.

Включение анестетиков в состав вдыхаемой газовой смеси при ИВЛ даже вне операционной в любом случае означает проведение общей анестезии, что влечет обяза­тельное соблюдение всех соответствующих правил.

Гелий. Ингаляцию гелиево-кислородных смесей главным образом при обструктивных расстройствах дыхания при­меняют уже несколько десятилетий. В нашей стране гелиево-кислородная терапия получила распространение благодаря работам О.А. Долиной и соавт. (1965, 1966). Лечебное действие гелия основано на том, что его плот­ность в несколько раз ниже, а способность обеспечить диффузию кислорода и углекислого газа заметно выше, чем у азота.

Дыхание воздухом в нормальных условиях (при Vcp.=0,6 л/с и линейной скорости потока в трахее около 2 м/с) характеризуется в основном ламинарным газотоком, при котором аэродинамическое сопротивление невелико и за­висит только от динамической вязкости газа, а не от его плотности. При нарушениях нормальной проходимости ка­кого-либо участка дыхательных путей или значительном увеличении скорости газотока создаются условия для пре­обладания турбулентности в потоке. Переход от ламинар­ного к турбулентному потоку характеризуется так назы­ваемым критическим числом Рейнольдса (Re), равным примерно 2300. Чем более выражена турбулентность, тем выше число Рейнольдса. Сопротивление турбулентному потоку значительно более высокое и наряду с прочими факторами зависит от плотности газа, поскольку кинетиче­ская энергия завихрения пропорциональна массе. Соглас­но теоретическим и экспериментальным исследованиям Kramer и соавт. (1979), сопротивление турбулентному по­току газа (если Re>4000) при ИВЛ может быть снижено на 60% применением гелиево-кислородной смеси (Fio2=0,3), плотность которой приблизительно в 3 раза меньше плотности воздуха. Эффект тем выраженное, чем выше число Re. Fritz и соавт. (1982), применяя гелиево-кислородную смесь (Fio2=0,3) для ИВЛ у больных с тяжелы­ми травмами грудной клетки, осложненными аспирацией, контузией легких, пневмо- или гемотораксом, отметили вы­раженное снижение эффективного минутного объема вен­тиляции, максимального давления вдоха и «давления пла­то на вдохе», увеличение растяжимости легких. Положи­тельные эффекты объясняются ламинаризацией газотока и усилением диффузии кислорода и углекислого газа, имею­щих следствием снижение аэродинамического сопротивле­ния, улучшение распределения вентиляционных объемов, восстановление аэрации спавшихся альвеол, увеличение альвеолярной вентиляции.

Терапевтический эффект гелия тем больше, чем выше его концентрация в дыхательной смеси. Однако по обще­принятой методике концентрацию гелия в смеси с кисло­родом во избежание гипоксии ограничивают 70%. Дози­ровать гелий можно с помощью ротаметрического дози­метра для закиси азота, показания которого ввиду разной плотности газов подлежат пересчету. Фактическая объемная скорость потока гелия превышает показания поплав­ка дозиметра приблизительно в 3,4 раза.

Гелий — дорогостоящий и труднодоступный газ. Поэто­му для экономии было бы желательно применять его, ис­пользуя реверсивный дыхательный контур с малым сум­марным газотоком. Однако этому препятствуют два основ­ных фактора: во-первых, при малом расходе гелия ука­занный пересчет чреват грубыми ошибками и, во-вторых, ввиду избирательного поглощения кислорода организмом, его концентрация во вдыхаемой смеси при малом сум­марном газотоке может снизиться до опасных пределов.

Поэтому если и можно применять гелиево-кислородные смеси в реверсивном дыхательном контуре аппаратов РО-6Н или «Спирон-301», то при условии, что суммар­ный газоток составит не менее 5 — 6 л/мип. Другое реше­ние возможно при разработке специального дозиметра для гелия и комплектации аппаратов анализатором кислорода.

Углекислый газ. В некоторых случаях необходимо со­хранить большой объем вентиляции, например, для под­держания воздушности легочной ткани, адаптации боль­ного к аппарату и т.д. Возникающая при этом гипокапния нежелательна для больного, особенно, например, при ишемических заболеваниях головного мозга. В этих слу­чаях наряду с искусственным увеличением мертвого про­странства аппарата (например, установлением дополни­тельной емкости между тройником пациента или неревер­сивным клапаном, с одной стороны, и трахеальной труб­кой или трахеостомпческой канюлей — с другой) может быть использовано включение углекислого газа в состав дыхательной смеси. Его концентрация в смеси газов, ве­роятно, будет весьма малой, во всяком случае не выше 5%. Следовательно, скорость газотока углекислого газа практически не будет превышать 1 л/мин. Можно прибег­нуть также к ИВЛ по реверсивному контуру с выключен­ным или незаполненным адсорбером. При всех способах применение гиперкарбических смесей наиболее эффектив­но и безопасно при контроле напряжения Рсо2 в артери­альной крови.

Глава 9




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 484; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.