Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 11 (2ч.) Нанотрубки




Другие области применения фуллеренов

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %. Фуллерены могут быть также использованы в фармации для создания новых лекарств. Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействие температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций. Так же фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов. Наконец, фуллерены могут найти применение в медицине.

В 1991 японский профессор Сумио Иидзима обнаружил длинные углеродные цилиндры, получившие название нанотрубок.

Нанотрубка - это молекула из более миллиона атомов углеро­да, представляющая собой трубку с диаметром около нанометра и длиной несколько десятков микрон. В стенках трубки атомы угле­рода расположены в вершинах правильных шестиугольников (рис.26).

Рис.26.

Эти изумительные нанотруб­ки в 100 тыс. раз тоньше человеческого волоса и оказались на ред­кость прочным материалом! Нанотрубки в 50-100 раз прочнее стали и имеют в шесть раз меньшую плотность! Модуль Юнга ~ уровень сопротивления материала деформации - у нанотрубок вдвое выше, чем у обычных углеродных волокон. То есть трубки не только прочные, но и гибкие, и напоминают по своему поведению не ломкие соломинки, а жесткие резиновые трубки. Под действием механических напряжений, превышающих критичес­кие, нанотрубки ведут себя довольно экстравагантно: они не "рвутся", не "ломаются", а просто-напросто перестраиваются!

Рис. 27 Диаграмма прочности нанотрубок по сравнению с высокопрочной сталью

Модуль Юнга – уровень сопротивления материала деформации – у нанотрубок вдвое выше, чем у обычных углеродных волокон. То есть трубки не только прочные, но и гибкие, и напоминают по своему поведению не ломкие соломинки, а жесткие резиновые трубки. Под действием механических напряжений, превышающих критические, нанотрубки ведут себя довольно экстравагантно: они не “рвутся”, не “ломаются”, а перестраиваются!

Эти необычные свойства нанотрубок можно использовать для создания искусственных мускулов, которые при одинаковом объеме могут быть вдесятеро сильнее биологических, не боятся высоких температур, вакуума и многих химических реагентов.

Из нанотрубок можно создать сверхлегкие и сверхпрочные композиционные материалы, чтобы шить из них одежду, не стесняющую движений, для пожарных и космонавтов. Нанокабель от Земли до Луны из одиночной трубки можно было бы намотать на катушку размером с маковое зернышко. Небольшая нить диаметром 1 мм, состоящая из нанотрубок, могла бы выдержать груз в 20 т, что в несколько сотен миллиардов раз больше ее собственной массы!

Правда, в настоящее время максимальная длина нанотрубок составляет десятки и сотни микрон – что, конечно, очень велико по атомным масштабам, но слишком мало для повседневного использования. Однако длина получаемых нанотрубок постепенно увеличивается сейчас ученые уже вплотную подошли к сантиметровому рубежу. Получены многослойные нанотрубки длиной 4 мм. Поэтому есть все основания надеяться, что в ближайшем будущем ученые научатся выращивать нанотрубки длиной в метры и даже сотни метров. Безусловно, это сильно повлияет на будущие технологии: ведь невидимый невооруженным взглядом “трос” в тысячи раз тоньше человеческого волоса и способный удерживать груз в сотни килограмм найдет бесчисленное множество применений.

Это открывает возможность создания материалов для авиационно-космического комплекса с уникальными механическими свойствами.

Нанотрубки бывают самой разной формы: однослойные и многослойные, прямые и спиральные. Кроме того, они демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств.

Разновидности нанотрубок (рис.28):

Рис. 28.

 

Например, в зависимости от конкретной схемы сворачивания графитовой плоскости (хиральности) нанотрубки могут быть как проводниками, так и полупроводниками электричества. Электронные свойства нанотрубок можно целенаправленно менять путем введения внутрь трубок атомов других веществ.

Рис. 29. Матрица нанотрубок

 

Пустоты внутри фуллеренов и нанотрубок давно привлекали внимание ученых. Эксперименты показали, что если внутрь фуллерена внедрить атом какого-нибудь вещества (этот процесс носит название “интеркаляция”, т.е. “внедрение”), то это может изменить его электрические свойства и даже превратить изолятор в сверхпроводник.

Таким же образом можно изменить свойства нанотрубок. Ученые смогли поместить внутрь нанотрубки целую цепочку из фуллеренов с уже внедренными в них атомами гадолиния. Электрические свойства такой необычной структуры сильно отличались как от свойств простой, полой нанотрубки, так и от свойств нанотрубки с пустыми фуллеренами внутри. Интересно отметить, что для таких соединений разработаны специальные химические обозначения. Описанная выше структура записывается как Gd@C60@SWNT, что означает “Gd внутри C60 внутри однослойной нанотрубки (Single Wall NanoTube)”.

На рис. 30 приведено СЭМ изображение Ru-Pt Nafion композитных нанотрубок:

 

Рис. 30.

 

Спектр возможного применения нанотрубок очень широк.

Из нанотрубок можно делать, например, уникальные провода для микроприборов. Уникальность их заключается в том, что ток протекает по ним практически без выделения тепла и достигает громадного значения – 107 А/см2. Классический проводник при таких значениях мгновенно бы испарился.

Разработано также несколько применений нанотрубок в компьютерной индустрии. Уже в 2006 году появятся эмиссионные мониторы с плоским экраном, работающие на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, другой конец начинает испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пикселя. Получающееся при этом зерно изображения будет фантастически малым: порядка микрона!

 

Рис. 31 Ковер из нанотрубок Рис. 32. Нанотекстиль

 

Другой пример – использование нанотрубки в качестве иглы сканирующего микроскопа. Обычно такое острие представляет собой остро заточенную вольфрамовую иглу, но по атомным меркам такая заточка все равно достаточно грубая. Нанотрубка же представляет собой идеальную иглу диаметром порядка нескольких атомов. Прикладывая определенное напряжение, можно подхватывать атомы и целые молекулы, находящиеся на подложке непосредственно под иглой, и переносить их с места на место. Необычные электрические свойства нанотрубок сделают их одним из основных материалов наноэлектроники. На их основе изготовлены новые элементы для компьютеров. Эти элементы обеспечивают уменьшение устройств по сравнению с кремниевыми на несколько порядков. Сейчас активно обсуждается вопрос о том, в какую сторону пойдет развитие электроники после того, как возможности дальнейшей миниатюризации электронных схем на основе традиционных полупроводников будут полностью исчерпаны (это может произойти в ближайшие 5-6 лет).

И нанотрубкам отводится, бесспорно, лидирующее положение среди перспективных претендентов на место кремния.

Еще одно применение нанотрубок в наноэлектронике создание полупроводниковых гетероструктур, т.е. структур типа “металл/полупроводник” или стык двух разных полупроводников (нанотранзисторы).

Теперь для изготовления такой структуры не надо будет выращивать отдельно два материала и затем “сваривать” их друг с другом. Нужно лишь в процессе роста нанотрубки создать в ней структурный дефект (а именно _ заменить один из углеродных шестиугольников пятиугольником) просто надломив его посередине особым образом. Тогда одна часть нанотрубки будет обладать металлическими свойствами, а другая свойствами полупроводников.

Нанотрубки – идеальный материал для безопасного хранения газов во внутренних полостях. В первую очередь это относится к водороду, который давно стали бы использовать как топливо для автомобилей, если бы громоздкие, толстостенные, тяжелые и небезопасные баллоны для хранения водорода не лишали водород его главного преимущества – большого количества энергии, выделяемой на единицу массы (на 500 км пробега автомобиля требуется всего около 3 кг Н2).

Ввиду того, что запасы нефти на нашей планете не бесконечны, автомобиль на водородном топливе был бы эффективным решением многих экологических проблем. Поэтому, возможно, скоро вместо традиционного бензина новые водородные “бензобаки” с нанотрубками будут заполнять водородным топливом стационарно под давлением, а извлекать – небольшим подогревом такого “водородобака”. Чтобы превзойти обычные газовые баллоны по плотности запасенной энергии, нужны нанотрубки с полостями относительно большого диаметра – более 2–3 нм.

В нанотрубки можно не только “загонять” атомы и молекулы поодиночке, но и буквально “вливать” вещество. Как показали эксперименты, открытая нанотрубка обладает капиллярными свойствами, то есть как бы втягивает вещество в себя.

Таким образом, нанотрубки можно использовать как микроскопические контейнеры для перевозки и хранения химически или биологически активных веществ: белков, ядовитых газов, компонентов топлива и даже расплавленных металлов.

Попав внутрь нанотрубки, атомы или молекулы уже не могут выйти наружу: концы нанотрубок надежно “запаяны”, а углеродное кольцо слишком узко для того, чтобы большинство атомов "пролезло" через него. В таком виде активные атомы или молекулы можно безопасно транспортировать. Попав в место назначения, нанотрубки раскрываются с одного конца и выпускают свое содержимое в строго определенных дозах. Эксперименты такого рода уже сейчас проводятся во многих лабораториях, а операции “запаивания” и “распаивания” концов нанотрубок вполне под силу современной технологии. Уже создана нанотрубка с одним закрытым концом.

Также не исключено, что через 10-15 лет на базе этой технологии будет проводиться лечение заболеваний: скажем, больному вводят в кровь заранее приготовленные нанотрубки с очень активными ферментами, эти нанотрубки собираются в определенном месте организма некими микроскопическими механизмами и “вскрываются” в определенный момент. Современная технология уже практически готова к реализации такой схемы через 3-5 лет. Основной проблемой является отсутствие эффективных методов “открывания” таких механизмов и их интеграции в белковые маркеры для поиска клеток-мишеней.

Возможно, создадут и более эффективные методы доставки лекарств на основе вирусов и нанокапсул. На основе нанотрубок также создан конвейер, способный точно транспортировать отдельные атомы с большими скоростями вдоль нанотрубки.

 




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 1193; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.