КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понимание текста
Проблема понимания текстов на естественном языке включает не только лингвистические аспекты. С ней тесно связаны задачи, традиционно решаемые в рамках психологии, философии и семиотики. Рассказывая о проблеме анализа текстов, мы несколько раз ссылались на то, что сам анализ служит инструментом для понимания содержания текста. Пожалуй, самое важное значение проблема понимания имеет в так называемых диалоговых системах. В начале 70-х гг. специалисты в области искусственного интеллекта удивляли далеких от науки людей системами общения на естественном языке, демонстрирующими на первый взгляд почти безграничные возможности созданного ими интеллектуального интерфейса общения. Любой человек мог общаться с системой на произвольную тему, используя все богатство доступного ему языка. При этом система поддерживала разговор, поражая собеседника своими способностями. Вот один из примеров такого разговора, в котором в качестве интеллектуального интерфейса использовалась программа, реализованная на ЭВМ, получившая название "Элиза" Внешне диалог напоминает светскую беседу двух не слишком знакомых людей. Это, скорее, игра в общение, чем общение по существу. Но и такая игра занимает в жизни людей немалое место. "Элиза" в подобных разговорах оказывается вполне "на уровне". Многие даже считают, что их просто разыгрывают и с ними общается не программа, реализованная на компьютере, а живой собеседник. Подобные примеры диалоговых систем сейчас можно найти в сети Интернет, где эти системы получили название языковых чатов[4]. Уровень общения, который демонстрируют "Элиза" и другие подобные ей программы, по сути, самый низкий из всех возможных. Это уровень так называемого фактического диалога. В таком диалоге партнеры (или один из них) практически не слушают друг друга. Это лишь видимость беседы, а для поддержания ее используются стандартные "домашние заготовки". Одной из особенностей мышления человека (едва ли не основной для возможности самого мышления) является его разномодальность. Психологи пользуются этим термином, чтобы подчеркнуть, что наши представления об окружающем мире и о нас самих могут иметь различную природу (различную модальность). Можно "мыслить словами", но можно представлять себе какие-то зрительные картинки, как часто бывает в снах. Есть люди, для которых многие воспоминания состоят из запахов или вкусовых впечатлений. Словом, все наши органы чувств дают свою модальность в мышлении. Но две модальности: символьная (текстовая) и зрительная — являются для человека основными (Информатика). Легко проверить, что между этими модальностями имеется весьма тесная связь. Обычно называние чего-то или текстовое описание некоторой ситуации тут же вызывает зрительные представления об этих объектах и ситуациях. И наоборот, стоит нам увидеть нечто, как мы тут же готовы описать увиденное с помощью нашего родного языка. Так текст и сопутствующая ему зрительная картина оказываются объединенными в нашем сознании и интегрированными в некоторое единство. Текст как бы "живет" в виде некоторого образного представления. И изучение того, как происходит эта интеграция и как по одной составляющей представления появляется вторая, — одна из увлекательных задач, стоящих перед специалистами в области компьютерной лингвистики и их коллегами — создателями интеллектуальных систем. Уже найдены некоторые важные законы интеграции текстов и зрительных образов. Созданы первые экспериментальные модели этого процесса и первые интеллектуальные системы, способные описывать в виде текста предъявляемую им картинку (например, пейзаж), а также воссоздавать одну из возможных картин, соответствующих введенному в систему тексту. Заключение Появление искусственных систем, способных воспринимать и понимать человеческую речь (пока в весьма ограниченном объеме) и тексты на естественном языке, создало предпосылки для непосредственного общения человека и компьютера. Это, в свою очередь, повысило интерес лингвистов к процессам, сопутствующим организации и ведению диалога. Примерами могут служить: - способ построения сценария диалога на основе тех целей, которые активная сторона в диалоге ставит перед собой; - поддержка выбранного сценария с учетом интересов партнера и его возможного противодействия тому сценарию, который используется; - нахождение средств маскировки истинных намерений говорящего; - организация пассивной поддержки коммуникационного процесса и т.д. Эти пять направлений, которые активно развиваются в компьютерной лингвистике, естественно, не исчерпывают всего содержания этой науки. Но и сказанного вполне достаточно, чтобы оценить ее важность и значимость не только для самой лингвистики, но и для создания технических систем, по способностям к диалогу, не уступающих человеку. Список использованной литературы
1. Апресян Ю.Д. Избранные труды, том I. Лексическая семантика: 2-е изд., испр. И доп. – М.: Школа «Языки русской культуры», Издательская фирма «Восточная литература» РАН, 1995 2. Апресян Ю.Д. Избранные труды, том II. Интегральное описание языка и системная лексикография. – М.: Школа «Языки русской культуры», 2005. 3. Попов Э.В. Общение с ЭВМ на естественном языке. М. Наука. 2000. 4. Davies, K.H., Biddulph, R. and Balashek, S. (1952) Automatic Speech Recognition of Spoken Digits, J. Acoust. Soc. Am. 24(6) pp.637 – 642 5. Guariano N., Giaretta P. Ontologies and Knowledge Bases. Towards a Terminological Clarification // Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing. Amsterdam: IOS Press, 1995. P. 25–32. 6. Загорулько Ю.А. Построение порталов научных знаний на основе онтологий//Вычислительные технологии.т.12,спецвып.2,-2007.–С.169–177. 7. Using Dublin Core. http://dublincore.org/documents/usageguide/ 8. Боровикова О.И., Загорулько Ю.А., Сидорова Е.А. Подход к автоматизации сбора онтологической информации для интернет-портала знаний // Компьютерная лингвистика и интеллектуальные технологии: Труды международной конференции Диалог'2005 (Звенигород, 1-5 июня 2005 г.). – Москва: Наука, 2005. -С. 65–70. 9. Андреева О.А., Боровикова О.И., Загорулько Ю.А. и др. Археологический портал знаний: содержательный доступ к знаниям и информационным ресурсам по археологии // Труды 10-й нац. конф. по искусственному интеллекту с международным участием КИИ'2006. М.: Физматлит, 2006. -Т.3, -С.832–840. 10. Black P. Компьютерная лингвистика // Компьютерные Вести. – 1999. – № 26; То же [Электронный ресурс]. – URL: www.kv.by/index1999262201.htm (21.11.09). Приложения 1) DARPA (англ. Defense Advanced Research Projects Agency — агентство передовых оборонных исследовательских проектов) — это агентство Министерства обороны США, отвечающее за разработку новых технологий для использования в вооружённых силах. 2) Тест Тьюринга — эмпирический тест, идея которого была предложена Аланом Тьюрингом в статье «Вычислительные машины и разум» (англ. Computing Machinery and Intelligence), опубликованной в 1950 году в философском журнале «Mind». Тьюринг задался целью определить, может ли машина мыслить. Стандартная интерпретация этого теста звучит следующим образом: «Человек взаимодействует с одним компьютером и одним человеком. На основании ответов на вопросы он должен определить, с кем он разговаривает: с человеком или компьютерной программой. Задача компьютерной программы — ввести человека в заблуждение, заставив сделать неверный выбор». Все участники теста не видят друг друга. Если судья не может сказать определенно, кто из собеседников является человеком, то считается, что машина прошла тест. Чтобы протестировать именно интеллект машины, а не её возможность распознавать устную речь, беседа ведется в режиме «только текст», например, с помощью клавиатуры и экрана (компьютера-посредника). Переписка должна производиться через контролируемые промежутки времени, чтобы судья не мог делать заключения, исходя из скорости ответов. Во времена Тьюринга компьютеры реагировали медленнее человека. Сейчас это правило необходимо, потому что они реагируют гораздо быстрее, чем человек. По состоянию на 2009 год ни одна из существующих компьютерных систем не приблизилась к прохождению теста. 3) SHRDLU — ранняя программа понимания естественного языка, разработанная Терри Виноградом в MIT в 1968—1970 годах. Она была написана на языках Micro Planner и Лисп на компьютере DEC PDP-6 и использовала графический терминал DEC. Впоследствии в лаборатории компьютерной графики в университете штата Юта была внесена возможность полноценной трёхмерной отрисовки «мира» SHRDLU. 4) ОДНАЖДЫ В ТРИДЕВЯТОМ ЦАРСТВЕ, В ТРИДЕСЯТОМ ГОСУДАРСТВЕ ЖИЛ ЦАРЬ. ЦАРЬ ИМЕЛ ДОЧЬ. ЦАРЬ ОТПРАВИЛСЯ НА ОХОТУ ПООХОТИТЬСЯ. ЦАРЬ ЗАПРЕТИЛ ДОЧЕРИ ВЫХОДИТЬ ИЗ ДОМА. НАРУШИЛА ДОЧЬ ЗАПРЕТ. НАЛЕТЕЛ КОЩЕЙ. УНЕС КОЩЕЙ ДОЧЬ. ИВАН ОТПРАВИЛСЯ КУДА ГЛАЗА ГЛЯДЯТ ИСКАТЬ ДОЧЬ. ДОЛГО ЛИ, КОРОТКО ЛИ ШЕЛ ИВАН. ВСТРЕТИЛ ИВАН СТАРУШКУ.СТАРУШКА ПОГИБАЛА, УМИРАЛА С ГОЛОДА. ПОМОГ ИВАН СТАРУШКЕ, НАКОРМИЛ. РАССКАЗАЛ ИВАН СТАРУШКЕ, КУДА ПУТЬ ДЕРЖИТ. ДАЛА СТАРУШКА ИВАНУ КЛУБОЧЕК, КУДА ПОКАТИТСЯ, ТУДА И ИДИ. ПОКАТИЛ ИВАН КЛУБОЧЕК. ПОШЕЛ ДАЛЬШЕ ИВАН. ВСТРЕТИЛ ИВАН СТАРЕНЬКУЮ СТАРУШКУ. СТАРЕНЬКАЯ СТАРУШКА ПОГИБАЛА БЕЗ ВОДЫ. ПОМОГ ИВАН СТАРЕНЬКОЙ СТАРУШКЕ, НАПОИЛ. РАССКАЗАЛ ИВАН СТАРЕНЬКОЙ СТАРУШКЕ, КУДА ПУТЬ ДЕРЖИТ. ДАЛА СТАРЕНЬКАЯ СТАРУШКА ИВАНУ СЕРЕБРЯНЫЙ КЛУБОЧЕК, КУДА ПОКАТИТСЯ, ТУДА И СТУПАЙ СЕБЕ. ПОКАТИЛ ИВАН СЕРЕБРЯНЫЙ КЛУБОЧЕК. ПОШЕЛ ДАЛЬШЕ ИВАН. ВСТРЕТИЛ ИВАН СОВСЕМ СТАРЕНЬКУЮ СТАРУШКУ. СОВСЕМ СТАРЕНЬКАЯ СТАРУШКА ПОГИБАЛА, ПАДАЛА ПОД ТЯЖЕСТЬЮ НОШИ. ПОМОГ ИВАН СОВСЕМ СТАРЕНЬКОЙ СТАРУШКЕ ДОНЕСТИ НОШУ. РАССКАЗАЛ ИВАН СОВСЕМ СТАРЕНЬКОЙ СТАРУШКЕ, КУДА ПУТЬ ДЕРЖИТ. ДАЛА СОВСЕМ СТАРЕНЬКАЯ СТАРУШКА ИВАНУ ЗОЛОТОЙ КЛУБОЧЕК, КЛУБОЧЕК ПОКАТИТСЯ, А ТЫ ЗА НИМ ИДИ. ПОКАТИЛ ИВАН ЗОЛОТОЙ КЛУБОЧЕК. ПОШЕЛ ДАЛЬШЕ ИВАН. ПРИШЕЛ ОН В ПОДЗЕМНОЕ ЦАРСТВО КОЩЕЯ. ВИДИТ ИВАН ЗАМОК ИЗ ЗОЛОТА И СЕРЕБРА. ВОШЕЛ ИВАН В ЗАМОК. СИДИТ В ЗАМКЕ КОЩЕЙ БЕССМЕРТНЫЙ. СПРАШИВАЕТ КОЩЕЙ ИВАНА: ЗАЧЕМ ПОЖАЛОВАЛ КО МНЕ? ОТВЕЧАЕТ ИВАН КОЩЕЮ: ИЩУ ДОЧКУ ЦАРСКУЮ, ЧТО ТЫ УКРАЛ. ГОВОРИТ КОЩЕЙ: ВЫПОЛНИШЬ РАБОТУ, ЧТО Я ЗАДАМ, — ТВОЯ ЦАРЕВНА, НЕ ВЫПОЛНИШЬ — ДО КОНЦА ЖИЗНИ ПОД ЗЕМЛЕЙ ОСТАНЕШЬСЯ. КОЩЕЙ ЗАДАЛ ИВАНУ РАБОТУ: ЗА ОДНУ НОЧЬ ВЫРУБИТЬ ДРЕМУЧИЙ ЛЕС, ЗЕМЛЮ ВСПАХАТЬ, ПШЕНИЦУ ПОСЕЯТЬ, МУКУ СМОЛОТЬ, ПИРОГОВ НАПЕЧЬ И МНЕ НА СТОЛ ПОДАТЬ! ИВАН ВЫПОЛНИЛ РАБОТУ, ПРИНЕС ПИРОГИ. КОЩЕЙ ЗАДАЛ ИВАНУ РАБОТУ: ЗА ОДНУ НОЧЬ ПЧЕЛ РАЗВЕСТИ, ВОСК СОБРАТЬ, ДА ИЗ ВОСКА ДВОРЕЦ ПОСТРОИТЬ. ИВАН ВЫПОЛНИЛ РАБОТУ. К УТРУ-СВЕТУ БЫЛ ГОТОВ ДВОРЕЦ ИЗ ВОСКА. КОЩЕЙ ЗАДАЛ ИВАНУ РАБОТУ: ПРИЙТИ НА ЗЕЛЕНЫЙ ЛУГ, ПОЙМАТЬ ТАМ КОНЯ НЕЕЗЖЕНОГО, ДА ПРИЕХАТЬ КО МНЕ НА ТОМ КОНЕ! ИВАН ВЫПОЛНИЛ РАБОТУ, ОБЪЕЗДИЛ КОНЯ. КОНЬ ШАТАЕТСЯ, ИЗО РТА ПЕНА ПАДАЕТ. ОСВОБОДИЛ ИВАН ЦАРЕВНУ. ВЗЯЛ ИВАН ЦАРЕВНУ. ПОВЕЗ ИВАН ЦАРЕВНУ ВО ДВОРЕЦ. ЖЕНИЛСЯ ИВАН НА ЦАРЕВНЕ. ИВАН ПОЛУЧИЛ ПОЛЦАРСТВА. 5) Добрый реет шелест Плачет пустота Слушают качели И поет беда Стань покорно горе Томно лишь летит И прозрачно море Тайно шелестит И бежит земная Незаметно тень Медленно лесная Славит влажный день. 6) Собеседник: Сегодня прекрасная погода, не правда ли? "Элиза": Вы любите прекрасную погоду? С.: Конечно. Кто же ее не любит? "Э.": Да. Прекрасная погода — это хорошо. С.: Интересно, какие виды в этом году на урожай? "Э.": Вас это интересует? С.: Ну, более-менее. А вас? "Э.": Более-менее.
Дата добавления: 2015-06-27; Просмотров: 666; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |