Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тепловые сети. Потери энергии при транспортировке тепла




Качество электроэнергии.

Согласно ГОСТ существует 11 показателей качества электроэнергии. Наиболее часто встречаются следующие проблемы качества электроэнергии:

¡ Перепады напряжения – кратковременное уменьшение амплитуды питающего напряжения вызывающее сбои в чувствительном оборудовании таком, как частотно регулируемые приводы, реле, и роботы.

¡ Пропадания напряжения – кратковременное снижение нап ряжения в сети до нуля. Пропадание напряжения может быть на 1 или нескольких фазах, имеет короткую продолжительность менее 30 секунд.

¡ Фликер напряжения. — субъективное восприятие человеком колебаний светового потока искусственных источников освещения, вызванных колебаниями напряжения в электрической сети, питающей эти источники.

Снабжение теплотой потребителей состоит из трех взаимосвязанных процессов: сообщения теплоты теплоносителю, транспорта теплоносителя и использования теплового потенциала теплоносителя.

Системой теплоснабжения называется комплекс устройств по выработке, транспорту и использованию теплоты. Транспорт тепловой энергии осуществляется через систему трубопроводов. Систему трубопроводов часто называют тепловой сетью (Рис. 7).

Системы теплоснабжения классифицируются по следующим основным признакам: по мощности, по виду источника теплоты и по виду теплоносителя. По мощности системы теплоснабжения характеризуются дальностью передачи теплоты и числом потребителей. Они могут быть местными и централизованными. Местные – системы теплоснабжения, в которых три основных звена объединены и находятся в одном или смежных помещениях. При этом получение теплоты и передача ее воздуху помещений объединены в одном устройстве и расположены в отапливаемых помещениях (печи). Централизованны е – системы теплоснабжения, в которых от одного источника теплоты подается теплота для многих помещений.

По виду источника теплоты системы централизованного теплоснабжения разделяют на районное теплоснабжение и теплофикацию. При районном теплоснабжении источником теплоты служит районная котельная, при теплофикации – ТЭЦ.

Теплоноситель – среда, которая передает теплоту от источника теплоты к нагревательным приборам систем отопления, вентиляции и горячего водоснабжения. По виду теплоносителя системы теплоснабжения делятся на 2 группы – водяные и паровые. В водяных системах теплоснабжения теплоносителем служит вода, в паровых - пар. В Беларуси для городов и жилых районов используются водяные системы теплоснабжения. Пар применяется на промышленных площадках для технологических целей.

Системы водяных теплопроводов могут быть однотрубными и двухтрубными (в отдельных случаях многотрубными). Наиболее распространенной является двухтрубная система теплоснабжения (по одной трубе подается горячая вода потребителю, по другой, обратной, охлажденная вода возвращается на ТЭЦ или котельную).

Различают открытую и закрытую системы теплоснабжения. В открытой системе осуществляется «непосредственный водоразбор», то есть горячая вода из подающей сети разбирается потребителями для хозяйственных, санитарно-гигиенических нужд. При полном использовании горячей воды может быть применена однотрубная система. Место присоединения потребителей тепла к теплопроводной сети называется абонентским вводом.

Параметры теплоносителей – температура и давление. Вместо давления в практике эксплуатации используется напор [11] Н. Напор и давление связаны зависимостью

H= P/r g,

где H – напор, м; P - давление, Па; r - плотность теплоносителя, кг/м3; g - ускорение свободного падения, м /с2.

Мощность теплового потока Q (кВт), отдаваемого водой, характеризуется формулой

где G – массовый расход воды через систему теплопотребления, кг/с; c p – удельная теплоемкость воды c p = 4.19 кДж/кг×К; t1 – температура воды после источника теплоты до системы потребления; t2 – температура воды после системы потребления до источника теплоты.

В современных системах теплоснабжения применяют следующие значения температур воды: 1) t 1 = 105 °С, t 2 =70 °С в системах отопления жилых и общественных зданий; 2) t 1 = 150 °С, t2 =70 °С в системах централизованного теплоснабжения от котельной или ТЭЦ, а также в системах отопления промышленных зданий.

Основными элементами тепловых сетей являются трубопровод, состоящий из стальных труб, соединенных между собой с помощью сварки, изоляционная конструкция, предназначенная для защиты трубопровода от наружной коррозии и тепловых потерь, и несущая конструкция, воспринимающая вес трубопровода и усилия, возникающие при его эксплуатации.

Тепловая изоляци [12] я накладывается на трубопроводы для снижения потерь теплоты при транспортировке теплоносителя. Потери теплоты снижаются при надземной прокладке в 10–15 раз, а при подземной – в 3–5 раз по сравнению с неизолированными трубопроводами. Тепловая изоляция должна обладать достаточной механической прочностью, долговечностью, стойкостью против увлажнения (гидрофобностью), не создавать условий для возникновения коррозии и при всем этом быть дешевой.

При транспорте тепла по трубам возникают линейные Qл и местные Qм тепловые потери. Линейные потери тепла по длине прямых или криволинейных (повороты, отводы, колена П-образных компенсаторов) участков труб определяют по формуле

здесь l – длина трубопровода в м, q – удельные теплопотери Дж/м. Местные тепловые потери возникают в результате стока тепла через опорные конструкции, соединения и др. Эти потери определяются приближенно различными способами. Потери тепла вызывают падение температуры теплоносителя, вследствие этого удельные теплопотери по длине возрастают.

Коэффициенты эффективности изоляционных конструкций определяются как:

где потери в – Q1 неизолированной, Q2 – изолированной трубах. Значения коэффициентов эффективности изоляционных конструкций должны быть в пределах ηi =0,85 - 0,95.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 2643; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.