Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Возможны ли путешествия во времени?




 

Кен Олум,

профессор физики Университета Тафтса

С тех пор, как Герберт Уэллс опубликовал свою «Машину времени», прогулки в прошлое либо в будущее с непременным возвращением в свою собственную эпоху прочно вошли в фантастическую литературу. Но вот возможны ли они с точки зрения современной науки, хотя бы чисто теоретически?

Путешествиями во времени я вместе с группой единомышленников занимаюсь в контексте общей теории относительности с определенными квантовыми поправками. Конкретно проблема ставится так: можно ли с помощью тех или иных квантовых полей сконструировать искривленное пространство-время ОТО, содержащее замкнутые мировые линии? Если мировая линия выходит из определенной пространственно-временной точки и в нее же и возвращается, то движение по этой петле как раз и будет путешествием во времени. Для тех, кто знаком с теорией относительности, уточню, что мировая линия обязана быть времени подобной. Это означает, что никакие перемещения вдоль нее не должны превышать скорость света.

 

Полуклассика

 

Наш подход к постановке проблемы темпоральных путешествий можно назвать полуклассическим, так как он основан на объединении классической теории тяготения Эйнштейна с квантовой теорией поля. Кое-кто говорит, что эту проблему путешествий надо изучать на базе чисто квантовой теории гравитации, но она пока не создана и мы не знаем, как она будет выглядеть.

Эйнштейновские уравнения симметричны относительно времени, их решения можно продолжать как в будущее, так и в прошлое. Поэтому из них не следует необратимость времени, которая наложила бы запрет на путешествия во времени. Однако геометрическая структура пространства-времени определяется свойствами материи, заполняющей пространство, ее энергией и давлением. Так что нашу основную проблему можно переформулировать так: какая именно материя допускает петли мировых линий? Оказывается, что привычная нам материя, состоящая из частиц и излучения, для этого никак не подходит. Нужна материя иного рода, обладающая отрицательной массой, а следовательно, если вспомнить знаменитую формулу Эйнштейна E=mc2, и отрицательной энергией (кстати, не стоит путать такую материю с античастицами — их массы и энергии положительны). Это давно доказано несколькими физиками, например Стивеном Хокингом.

 

 

Эффект Казимира

 

Материя с отрицательной массой и энергией может показаться нелепицей, однако она отработана теорией и даже подтверждена экспериментом. Правда, классическая физика ее не допускает, однако с точки зрения квантовой теории поля она вполне законна. Об этом свидетельствует физический эффект, названный в честь голландского физика Хендрика Казимира. Если взять две отполированные металлические пластины и поместить строго параллельно друг другу на дистанции в несколько микрометров, они будут притягиваться с силой, которую вполне можно измерить (что и было впервые сделано еще 15 лет назад). Это притяжение объясняется как раз тем, что пространство между пластинами имеет отрицательную энергию.

Откуда она берется? Будем для простоты считать, что пластины расположены в идеальном вакууме. Согласно квантовой теории, там все время рождаются и исчезают самые разные флуктуации квантовых полей, например виртуальные фотоны. Все они вносят вклад в среднюю энергию свободного вакуума, которая равна нулю. Чтобы это было возможным, часть флуктуаций должна иметь положительную энергию, а часть — отрицательную.

Но вблизи физических тел этот баланс может и не соблюдаться. В частности, в пространстве между пластинами «минусовые» флуктуации доминируют над «плюсовыми». Поэтому плотность вакуумной энергии там ниже плотности энергии свободного вакуума, то есть меньше нуля. Эта плотность обратно пропорциональна четвертой степени ширины щели между пластинами, в то время как объем межпластинного пространства пропорционален самой ширине. Так что их произведение имеет отрицательный знак и обратно пропорционально кубу ширины щели. В результате при сближении пластин полная ваккумная энергия межпластинного пространства все сильнее проваливается ниже нулевой отметки, и поэтому им энергетически выгодно притягиваться друг к другу.

 

Патруль времени

 

Но вернемся к путешествиям во времени. Коль скоро обычная материя имеет положительную массу, из нее невозможно изготовить устройство, способное перемещаться во времени. Если эта задача разрешима, то только с помощью каких-то конфигураций квантовых полей, обеспечивающих отрицательную энергию на всем протяжении замкнутой мировой линии.

Однако создать такую конфигурацию, по всей видимости, просто невозможно. Этому препятствует очень важное ограничение, которое называется условием усредненной нулевой энергии (Averaged Null Energy Condition, сокращенно ANEC). Математически оно выражается довольно сложным интегралом, а на простом общечеловеческом языке утверждает, что любые вклады со стороны отрицательной энергии вдоль мировых линий фотонов должны точно или даже с избытком компенсироваться добавками положительной энергии.

По всем имеющимся данным, природа соблюдает ANEC без всяких исключений. Можно показать, что этому условию подчиняется и эффект Казимира. Например, если сделать в пластинах два отверстия напротив друг друга и извне через них пропустить через межпластинное пространство световой луч, полная сумма изменений энергии вдоль его мировой линии будет положительной.

 

Прыжок в будущее

 

Согласно специальной теории относительности (СТО) Эйнштейна, время в космическом корабле, летящем со скоростью, близкой к скорости света, течет значительно медленней, чем на планете, которую он покинул (с точки зрения ее обитателей). Экипаж звездолета может возвратиться назад через тысячи лет и оказаться в далеком будущем. Поэтому путешествие в будущее — это чисто техническая задача. Кое-кто из нынешних космонавтов его уже совершил: Сергей Авдеев, который провел на орбите в общей сложности 747 суток, 14 часов и 16 минут, прыгнул в будущее на 20 миллисекунд. Правда, уравнения общей теории относительности (ОТО) предписывают часам замедлить ход при увеличении силы тяготения: на поверхности Земли время течет медленнее, чем на МКС (что тоже давно подтверждено). И если бы не этот эффект, «прыжок» Авдеева был бы немножечко длиннее.

Как это влияет на путешествия во времени? Можно доказать, что если в искривленном пространстве ОТО действует определенный аналог ANEC, то такие путешествия оказываются невозможными.

Иначе говоря, эта версия ANEC, которую мы назвали ахрональной, накладывает запрет на любые проекты машин времени, изготовленных с помощью материи с отрицательной массой.

Сейчас я вместе с моими студентами работаю над математическим доказательством этой версии, и, как мне кажется, мы уже кое-чего добились.

Если удастся построить искомое доказательство, принципиальная неосуществимость машины времени будет продемонстрирована — во всяком случае, в рамках полуклассического подхода. А поскольку полной квантовой теорией гравитации мы пока не располагаем, этот вывод придется принять как минимум до ее создания.




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 327; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.