Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Реакторы с иммобилизованными клетками




По словам Дэвида Нолта, руководителя проекта, человеческая кровь содержит порядка десяти тысяч различных белков, которые, в идеале, должны регистрировать био-оптические диски. Ведь даже незначительные изменения концентрации некоторых из этих белков могут предвещать развитие серьезных заболеваний. Следует отметить, что в настоящее время при проведении детальных исследований крови применяется очень дорогое оборудование стоимостью до 50 тысяч долларов и выше. Вместе с тем, появление био-оптических детекторов позволит значительно снизить стоимость проведения процедур, поскольку считывать данные можно будет посредством лишь незначительно модифицированных CD-приводов. Правда, в настоящее время предложенная методика нуждается в серьезных доработках, и прежде чем “BioCD” появятся на рынке, пройдет не менее десяти лет.

Иммобилизованные клетки микроорганизмов обычно применяют в комбинации с амперометрическими или потенциометрическими (газовыми) электродами для регистрации отдельных веществ и комплексных физиолого-биохимических параметров, которые трудно или вовсе невозможно оценить с помощью изолированных ферментов: потребление кислорода (показатель органического загрязнения природных или сточных вод), измеряемое амперометрически по поглощению О2 или потенциометрически по образованию СО2 клетками гриба Trichosporon cutaneum или бактерий Azotobacter vinelandii, E- coli и др.; токсичность водного раствора или воздуха, измеряемая сенсорами на базе иммобилизованных цианобактерий, у которых активность фотосистемы II снижается при наличии в среде токсических ком­понентов, особенно гербицидов; мутагенное действие тестируемого агента, определяемое стандартными методами обнаружения мутантных клеток, например, растущих и соответственно выделяющих СО2 лишь на обогащенной среде.

Микробные биосенсоры, в отличие от ферментных, не требуют регенерации кофакторов, стабильны (срок службы от 5 до 60 дней), причем стабильность может быть повышена периодическим погружением иммобилизованных клеток в свежую питательную среду. Недостаток микробных биосенсоров - медленный отклик на детектируемый агент (обычно от 10 до 60 мин), что объясняется затратами времени на транспорт этого агента внутрь клетки и его ферментативное расщепление, предшествующее появлению вне клеток продуктов, взаимодействующих с электродом (О2, СО2 и др.). Клетка в некоторых случаях откликается и на посторонние агенты, поэтому иммобилизованные на биосенсоре клетки целесообразно обрабатывать ингибиторами побочных ферментативных реакций, не специфичных по отношению к детектируемому агенту.

Известны биосенсоры с соиммобилизованными клетками и изолированными ферментами, что позволяет осуществлять многостадийные ферментативные реакции. Так, соиммобилизация уреазы и нитрифицирующих бактерий на О2 -электроде дает чувствительный биосенсор на мочевину. Возможно также совместное применение двух и более видов микроорганизмов в составе одного биосенсора.

Использование тканей растений и животных перспективно, но применяются сравнительно редко. Во многих случаях они более стабильны, чем ферменты и клетки, а порой более специфичны, чем микробные клетки. Так, глутаматный биосенсор на основе ткани свиной почки не откликается на мочевину, аланин, аргинин, гистидин и другие аминокислоты. Сложные органические соединения, такие как АМФ, дофамин, аскорбиновая кислота, в растительных тканях разлагаются до простых ионных или газообразных продуктов, что дает возможность регистрировать их ионоселективными (газовыми) электродами. Иммобилизация тканевых срезов - укрытие под сеткой или под мембраной - подкупает своей простотой. Например, дофамин регистрируют с помощью

«бананотрода» - тонкого среза мякоти банана, иммобилизованного на О2 -электроде.

Созданы датчики, в которых используют рецепторные системы различных организмов: пучок нервов или отдельные нервы из усов краба (биосенсор на аминокислоты и пуриновые основания), щупальца синих крабов, раков (биосенсоры на аминокислоты и гормоны), собачий нос (обнаружение контрабандных наркотиков и взрывчатки). Иногда предпочитают не весь рецепторный орган, а лишь клетки или даже их органеллы, непосредственно отвечающие за узнавание того или иного агента. Таковы биосенсоры с изолированными рецепторами растений на ауксины и токсины.

Рецепторные биосенсоры дают быстрые ответы на детектируемый агент, высокоспецифичны, баснословно чувствительны: биосенсор на базе щупалец атлантического синего краба отвечает на 10-13 моль/л глутамина. Однако изолированные рецепторы недостаточно стабильны. Продление их жизни ищут на путях инкапсулирования рецепторов в бислойные липидные мембраны, в том числе в липосомы.

13.Иммобилизованные ферменты в медицине. Иммобилизованные ферменты имеют огромное значение для медицины. В частности, большой рынок сбыта занимают тромболитические ферменты, предназначенные для борьбы с сердечно­сосудистыми заболеваниями. Так, в отечественную клиническую, практику внедрен препарат «стрептодеказа», содержащий стрептокиназу - активатор предшественника протеиназы плазмина, предотвра-щающий образование тромба в кровеносной системе.

Ферменты, разрушающие некоторые незаменимые аминокислоты (например, аспарагиназа), используют для борьбы со злокачественным ростом опухолей. Протеолитические ферменты (трипсин, химотрипсин, субтилизин, коллагеназа), иммобилизованные на волокнистых материалах (целлюлоза, полиамидные волокна, декстран и др.), применяют для эффективного лечения ран, язв, ожогов, абсцессов, а их белковые ингибиторы - в заместительной терапии для лечения эмфиземы и панкреатитов.

Исключительно важны с практической точки зрения работы, посвященные направленному транспорту лекарственных веществ. В этом отношении особенно выгодны инкапсулированные ферменты типа искусственной клетки. Так, микрокапсулы, стенки которых представлены оболочкой эритроцита («тень эритроцита»), а их содержимое заполнено ферментом аспарагиназой, переносятся кровотоком к зонам скопления аспарагина и поэтому применяются для лечения аспарагинзависимых опухолей, в частности саркомы. Колонки, заполненные микрокапсулами с ферментом, используют для диализа в аппарате «искусственная почка», которая работает в 100 раз эффективнее обычного аппарата.

Таким образом, использование иммобилизованных ферментов во многих жизненно важных отраслях народного хозяйства становится все более массовым. Выгодное сочетание избирательности и эффективности с долговечностью и стабильностью иммобилизованных ферментов в корне меняет химическое производство, способы добывания сырья, способствует созданию новых биотехнологических процессов и методов терапии, совершенствует медицинскую диагностику, анализ, органический синтез и оказывает огромное влияние на образ жизни человека.

 

Каталитические системы с иммобилизованными клетками должны обеспечивать технологические и экономические преимущества по сравнению с традиционными процессами микробиологического синтеза на основе свободных клеток. Помимо свойств непосредственно иммобилизованного биокатализатора (нерастворимость, высокая активность, собственная система регенерации кофакторов и т.д.) важную роль в реализации таких преимуществ играет аппаратурное оформление процессов с иммобилизованными клетками, иными словами, выбор конструкции реакторов, где осуществляются биокаталитические процессы.

Любую систему, у которой существует ограничивающая ее поверхность и в которой протекают биохимические процессы, называют реактором (биореактором). С точки зрения организации массопотоков реакторы, в том числе промышленные, могут работать в периодическом режиме, периодическом режиме с доливом субстрата, полунепрерывном (полупериодическом) и непрерывном поточном режимах.

Высокая концентрация микроорганизмов в рабочем объеме реактора с иммобилизованными клетками определяет необходимость создания высоких скоростей массопередачи, что особенно важно для аэробных процессов, когда недостаточно интенсивная массоподача кислорода может лимитировать скорость образования целевого продукта. Эти требования приводят к необходимости перемешивания среды в рабочем объеме. Отсюда следует, что биокатализатор должен быть стоек к механическому истиранию его гранул и частиц. Тем не менее, механическая прочность иммобилизованных биокатализаторов часто бывает недостаточной, поэтому ее следует компенсировать путем разработки реакторов соответствующей конструкции. Исходя из этого удобно классифици­ровать реакторы для иммобилизованных клеток по относительному движению частиц твердой фазы (биокатализатора). По этому признаку все виды реакторов можно разделить на два типа - с отсутствием или с наличием движения частиц твердой фазы.

Отметим, что типы реакторов по этой классификации достаточно условны и отражают лишь наиболее общие принципы их устройства и функционирования. На практике те или иные реакторы могут сочетать принципы обоих типов, представлять разнообразные их модификации. Рассмотрим более подробно конкретные виды реакторов.

Реактор периодического действия (рис.5а) устроен просто: он представляет собой емкость с мешалкой, в которую помещают биокатализатор и раствор субстрата (питательную среду). После окончания процесса, иммобилизованные клетки отделяют от продуктов центрифугированием или фильтрацией и биокаталитический цикл начинается с начала. Очевидно, что такие реакторы недостаточно производительны, характеризуются большими потерями биокатализатора и находят лишь ограниченное применение, хотя следует отметить, что для традиционной микробиологической промышленности, основанной на использовании свободных клеток микроорганизмов, такой тип реактора является наиболее распространенным.

Проточный реактор с перемешиванием (рис.5б) отличается от предыдущего тем, что после каждого каталитического цикла отделение биокатализатора не происходит, субстрат периодически доливается, периодически же отделяются продукты. Эффективность такого реактора выше, чем у периодического. В идеальном проточном реакторе с перемешиванием содержимое находится в равновесном состоянии и система напоминает хемостат - один из вариантов непрерывного культивирования свободных клеток микроорганизмов.

Проточные реакторы могут иметь неподвижный или перемешиваемый слой катализатора. Рассмотрим сначала реакторы с неподвижным слоем. Иммобилизованные клетки (в форме гранул, стружки, дисков, зерен, волокон и т.д.) могут быть легко упакованы в колонне, образуя неподвижный слой. Субстрат проходит через слой биокатализатора сверху или снизу. Если профиль потока жидкости точно перекрывает поперечное сечение реактора, то реактор работает по поршневому принципу. Концентрация субстрата максимальна на входе, а концентрация продуктов - на выходе из реактора, следовательно, эти реакторы особенно удобны для процессов, сопровождаемых ингибированием продуктами. Реакторы такого рода нашли промышленное применение, в частности для очистки сточных вод, получения уксусной, яблочной, аспарагиновой кислот, глюкозо-фруктозного сиропа, а также для процессов с иммобилизованными ферментами. Кроме проточного реактора с неподвижным слоем (рис.5в) применяют серию таких реакторов, а также проточный реактор с неподвижным слоем с рециркуляцией (рис.5г).

Для микробиологических процессов, проходящих с выделением газов (при получении этанола, например, выделяется СО2), для эффективного их отвода целесообразно использовать наклонный проточный реактор или горизонтальный проточный реактор с фиксированным слоем биокатализатора (рис. 5д).

Проточные реакторы с перемешиваемым слоем биокатализатора могут быть с взвешенным (псевдоожиженным или кипящим) слоем, а также движущимся фиксированным слоем. Реакторы с взвешенным слоем характеризуются тем, что субстрат поступает снизу достаточно быстро, так чтобы поддерживать частицы во взвешенном состоянии, но не настолько быстро, чтобы частицы уносились вместе с выходящим потоком жидкости. В данном случае реализуется режим, промежуточный между полным перемешиванием (как в проточном реакторе с перемешиванием) и отсутствием перемешивания (как в реакторе поршневого типа). Схема реактора с перемешиванием представлена на рис.5е. Реакторы с взвешенным слоем целесообразно применять, когда псевдоожижение осуществляют газовой фазой (при аэрации или при выделении газа в катализируемом процессе), а также для переработки вязких субстратов.

Рис.5 Типы реакторов

а - периодического действия; б - проточный с перемешиванием; в - с неподвижным слоем (проточный); г - с рециклом; д - горизонтальный с неподвижным слоем; е - проточный с взвешенным (“кипящим”) слоем

 

Относительная скорость движения жидкости и гранул в реакторах со взвешенным слоем невелика, что невыгодно с точки зрения обеспечения биокатализатора субстратом. Более удобными представляются реакторы с движущимся фиксированным слоем биокатализатора, когда расположение его гранул фиксировано друг относительно друга (это исключает также механическое повреждение гранул).

Предложен ряд вариантов реакторов с вращающимся перфорированным контейнером (рис.6а), с кассетами диффузорами и мешалкой (рис.6б), а также реакторы типа "активный ротор" с перфорированными кассетами, выполняющими роль мешалки (рис.6в).

 




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 1925; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.