Разложение периодических несинусоидальных кривых в ряд Фурье
Из математики известно, что всякая периодическая функция , где Т – период, удовлетворяющая условиям Дирихле, может быть разложена в тригонометрический ряд. Можно отметить, что функции, рассматриваемые в электротехнике, этим условиям удовлетворяют, поэтому проверку на их выполнение проводить не нужно.
При разложении в ряд Фурье функция представляется следующим образом:
.
(1)
Здесь - постоянная составляющая или нулевая гармоника;
- первая (основная) гармоника, изменяющаяся с угловой частотой , где Т – период несинусоидальной периодической функции.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление