КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод условной линеаризации
Аналитические методы расчета Аналитическими называются методы решения, базирующиеся на аналитическом интегрировании дифференциальных уравнений, описывающих состояние нелинейной цепи с использованием аналитических выражений характеристик нелинейных элементов. Основными аналитическими методами, используемыми при решении широкого круга задач электротехники, являются: – метод условной линеаризации; – метод аналитической аппроксимации; – метод кусочно-линейной аппроксимации.
Метод условной линеаризации применяется в случаях, когда в нелинейном уравнении одно из слагаемых в левой части мало по сравнению с другими, вследствие чего, без внесения существенной погрешности, его можно соответствующим образом линеаризовать. Благодаря этому все уравнение становится линейным для одной из переменных, определяющих характеристику нелинейного элемента, например . С использованием этой характеристики находится затем временная зависимость для второй определяющей ее переменной по алгоритму: . Метод отличается простотой, однако получаемое с его использованием решение является достаточно приближенным, вследствие чего он в основном применяется для ориентировочных расчетов.
1. Запишем уравнение состояния цепи после коммутации
2. Используя метод условной линеаризации, определим второе слагаемое в левой части (1) как
где ; и - амплитуды потокосцепления и тока в установившемся послекоммутационном режиме; . 3. Подставив (2) в (1), получим линейное дифференциальное уравнение , решением которого на основании классического метода расчета переходных процессов является . 4. Принужденная составляющая определяется соотношением , где . Для определения и предположим (с последующей проверкой), что . При этом условии и . По зависимости для полученного значения найдем .Тогда и , т.е. сделанное выше предположение корректно. Следует отметить, что в общем случае значения и могут быть определены, например, итерационным методом. Определив , запишем . Поскольку по условию , то . Таким образом,
6. Не решая трансцендентное уравнение, будем считать, что максимальное значение потокосцепления имеет место примерно через полпериода своего изменения, т.е. при . Подставив это время в (3), получим: По кривой для найдем максимальное значение тока , которое в раз превышает амплитуду тока в установившемся послекоммутационном режиме. Напомним, что для линейной цепи Примечания: 1. Обычно при использовании метода условной линеаризации для расчета переходного процесса при подключении нелинейной катушки индуктивности к источнику синусоидального напряжения эквивалентная линейная индуктивность определяется исходя из амплитудных значений тока и потокосцепления в установившемся послекоммутационном режиме, как это и было сделано в рассмотренном выше примере. Однако если необходимо оценить максимально возможное значение тока, то величину индуктивности следует определять по начальному участку вебер–амперной характеристики, где максимальна. 2. Если сопротивление резистора в ветви с нелинейной катушкой достаточно велико, так что , то следует пренебречь нелинейностью слагаемого , положив . В этом случае нелинейное уравнение (1) сводится к линейному вида , и соответственно кривая определяется по кривым и .
Дата добавления: 2014-01-03; Просмотров: 395; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |