Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение: корректное выражение АТД

New

put (new, x)

item (new) - если это кажется странным, то см. комментарии ниже.

empty (put (new, x))

stackexp - ранее определенное сложное выражение.

Однако выражения put (x) и put (x, new) не являются правильно построенными, так как они не соответствуют правилу: put всегда должно иметь два аргумента - первый типа STACK [G] и второй типа G.

Третий пример в рамке item (new) не задает никакого осмысленного вычисления, поскольку аргумент new не удовлетворяет предусловию для item. Хотя это выражение и правильно построено, оно не является корректным. Вот точное определение этого понятия.

Пусть f(x1,..., xn) - правильно построенное выражение, содержащее одну или более функций некоторого АТД. Это выражение является корректным тогда и только тогда, когда все его аргументы xi являются (по рекурсии) корректными и их значения удовлетворяют предусловию f, если оно имеется.

Не следует путать "корректное" и "правильно построенное". "Правильно построенное" - это структурное свойство, указывающее на то, что функции, входящие в выражение, имеют правильное число аргументов соответствующих типов, а корректность, которой могут обладать лишь правильно построенные выражения, означает, что данное выражение задает осмысленное вычисление. Как мы видели, выражение put (x) не является правильно построенным (и поэтому бессмысленно спрашивать, корректно ли оно), а выражение item (new) правильно построено, но некорректно.

Правильно построенное, но некорректное выражение похоже на программу, которая компилируется (поскольку построена в соответствии с требованиями синтаксиса языка программирования и удовлетворяет ограничениям, накладываемым в нем на типы), но аварийно завершается во время выполнения из-за выполнения некоторой недопустимой операции, например, деления на 0 или выталкивания элемента из пустого стека.

Особый интерес с точки зрения полноты представляют выражения-запросы, у которых самая внешняя функция является запросом. Вот примеры таких выражений:

empty (put (put (new, x1), x2))

item (put (put (new, x1), x2))

stackexp

Выражение-запрос задает значение, которое (если оно определено) принадлежит не определяемому АТД, а некоторому другому ранее определенному типу. Так, первое приведенное выше выражение имеет значение типа BOOLEAN, а второе и третье - тип G формального параметра для элементов стека, например если мы рассматриваем АТД STACK [INTEGER], то это будет тип INTEGER.

Выражения-запросы представляют внешние наблюдения, которые можно сделать о результатах некоторого вычисления, использующего экземпляры нового АТД. Если спецификация этого АТД хорошая, то она должна позволить нам установить определены ли эти результаты, и если да, то каковы они. Представляется, что спецификация стека обладает этим свойством, по крайней мере, для трех представленных в примере выражений, поскольку она позволяет установить, что все эти выражения определены, и с помощью аксиом можно получить их значения:

empty (put (put (new, x1), x2)) = False

item (put (put (new, x1), x2)) = x2

stackexp = x4

Эти наблюдения, перенесенные на произвольные спецификации АТД, приводят к прагматическому понятию полноты, известному как достаточная полнота, она означает, что спецификация содержит достаточно сильные аксиомы, которые позволяют находить для любого выражения-запроса его результат в виде некоторого простого значения.

Приведем точное определение достаточной полноты. (Не расположенные к математике читатели могут пропустить остаток этого раздела).

<== предыдущая лекция | следующая лекция ==>
Полна ли моя спецификация? | Определение: достаточная полнота
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 547; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.