Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аксиомы стека

Правило нулевого веса

Пусть e - это правильно построенное и корректное стековое выражение, не содержащее item или empty. Тогда empty (e) истинно тогда и только тогда, когда вес e равен 0.

Доказательство использует индукцию по уровню вложенности (максимальному числу вложенных пар скобок) выражения. Для удобства ссылок напомним аксиомы, относящиеся к функции empty:

Для всех x: G, s: STACK [G]

  • (A3) empty (new)
  • (A4) not empty (put (s, x))

При уровне вложенности 0 (без скобок) выражение e должно совпадать с new, поэтому его вес равен 0 и оно корректно, так как у new нет никаких предусловий. Аксиома A3 утверждает, что empty (new) истинно. Это обеспечивает базис индукции как для правила корректного веса, так и для правила нулевого веса.

Индукционный шаг: предположим, что оба правила выполняются для всех выражений с уровнем вложенности не более n. Нужно доказать, что тогда они выполняются и для любого выражения e с уровнем вложенности n+1. Поскольку наши выражения сейчас не содержат функций-запросов, то e должно иметь один из следующих двух видов:

E1 · e = put (s, x)

E2 · e = remove (s)

где x имеет тип G, а уровень вложенности у s равен n. Пусть ws - это вес s.

В случае E1, поскольку put - всюду определенная функция, e корректно тогда и только тогда, когда s корректно, т. е. (по предположению индукции) тогда и только тогда, когда s и все его подвыражения имеют неотрицательные веса. Но это эквивалентно тому, что e и все его подвыражения имеют неотрицательные веса, что и доказывает правило корректного веса в этом случае. Кроме того, e имеет положительный вес ws+1, и (по аксиоме A4) является непустым, что доказывает правило нулевого веса.

В случае E2 выражение e корректно тогда и только тогда, когда выполняются два следующих условия:

EB1 _ s и все его подвыражения являются корректными.

EB2 _ not empty (s) (это предусловие для функции remove).

По предположению индукции условие EB2 означает, что вес s ws положителен или, что эквивалентно, вес e, равный ws - 1, является неотрицательным. Следовательно, e удовлетворяет Правилу корректного веса. Чтобы доказать, что оно также удовлетворяет правилу нулевого веса, нужно показать, что e пусто тогда и только тогда, когда его вес равен 0. Так как вес s положителен, то s должно содержать по крайней мере одно вхождение put, которое также входит и в e. Рассмотрим самое внешнее вхождение put в e, это вхождение находится непосредственно внутри remove (так как remove находится на самом внешнем уровне у e). Это означает, что у e имеется подвыражение (быть может, совпадающее с самим e) вида

remove (put (stack_expression, g_expression)),

которое по аксиоме A2 можно сократить просто до stack_expression. После выполнения этой замены вес e уменьшится на 2, и получившееся выражение, имеющее то же значение, что и e, удовлетворяет по предположению индукции правилу нулевого веса. Это доказывает утверждение индукции в случае E2.

Это доказательство попутно показывает, что во всяком правильно построенном выражении, не содержащем функций-запросов item и empty, можно устранить все вхождения remove, т.е. получить, применяя всюду, где это возможно, аксиому A2, некоторую каноническую форму, в которую будут входить только put и new. Например, выражение:

put (remove (remove (put (put (remove (put (put (new, x1), x2)), x3), x4))), x5)

имеет то же значение, что и каноническая форма:

put (put (new, x1), x5).

Давайте дадим этому механизму имя и приведем его определение:

<== предыдущая лекция | следующая лекция ==>
Определение: вес | Правило канонического сокращения
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 449; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.