Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Статистические оценки




Статистические оценки параметров распределения

Пусть требуется изучить количественный признак генеральной совокупности. Допустим теоретически удалось установить, какое именно распределение имеет признак. Возникает задача оценки параметров, которыми определяется это распределение. Например, если известно, что исследуемый признак распределен нормально, то необходимо оценить (приближенно найти) математическое ожидание и среднеквадратическое отклонение, т.к. эти параметры полностью определяют нормальное распределение. Если есть основание считать, что признак имеет распределение Пуассона, то необходимо найти параметр l.

Статистической оценкой Q* неизвестного параметра Q теоретического распределения называют функцию f(x1;x2;…xn) от наблюдаемых СВ X1;X2;…Xn.

Пусть Q* – статистическая оценка неизвестного параметра Q теоретического распределения. Допустим, что по выборке объема n найдена оценка Q*1. Извлекаем из генеральной совокупности другую выборку того же объема и по ее данным находим оценку Q*2. Получаем числа Q*1, Q*2,…, Q*k, которые различны между собой. Т.о. оценку Q* можно рассматривать как случайную величину, а числа Q*1, Q*2,…, Q*k – ее возможными значениями.

Точечной называют статистическую оценку, которая определяется одним числом Q*= f(x1;x2;…xn), где x1;x2;…xn - результаты наблюдений над количественным признаком (выборка).

Несмещенной называют статистическую оценку Q*, математическое ожидание которой равно оцениваемому параметру Q при любом объеме выборки, т. е. М (Q*)=Q.

Смещенно й называют оценку, математическое ожидание которой не равно оцениваемому параметру.

Эффективной называют статистическую оценку, которая (при заданном объеме выборки n) имеет наименьшую возможную дисперсию.

При рассмотрении выборок большого объема (n велико!) к статистическим оценкам предъявляется требование состоятельности.

Однако несмещенность не является достаточным условием хорошего приближения к истин-ному значению оцениваемого параметра. Если при этом возможные значения Θ* могут значительно отклоняться от среднего значения, то есть дисперсия Θ* велика, то значение, найденное по данным одной выборки, может значительно отличаться от оцениваемого параметра. Следовательно, требуется наложить ограничения на дисперсию.

Состоятельной называется статистическая оценка, которая при п →∞ стремится по вероятности к оцениваемому параметру (если эта оценка несмещенная, то она будет состоятельной, если при п →∞ ее дисперсия стремится к 0).




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 399; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.