Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Модульная арифметика


В криптографии и криптоанализе часто бывает необходимо сложить две последовательности чисел или же вычесть одну из другой. Такое сложение и вычитание производится, как правило, не с помощью обычных арифметических действий, а с помощью операций, называемых модульной арифметикой. В модульной арифметике сложение, вычитание выполняется относительно некоторого фиксированного числа, которое называется модуль. Типичными значениями модулей, используемые в криптографии, являются 2, 10 и 26. Какой бы модуль мы ни взяли, все встречающиеся числа заменяются на остатки от деления этих чисел. Если в остатке получается отрицательное число, то к нему прибавляют значение модуля, чтобы остаток стал неотрицательным. Например, если используется модуль 26, то единственно возможные числа лежат в диапазоне от 0 до 25. Так, если прибавить 17 к 19, то результат равен 10, поскольку 17+19 = 36, а 36 при делении на 26 дает остаток 10. Чтобы указать, что используется модуль 26, принята форма записи:

17+19=10(mod26).

Если вычесть 19 из 17, то результат (-2) получается отрицательным, поэтому к нему прибавляется 26, и в итоге получается 24.

При сложении по модулю 26 двух числовых последовательностей сформулированные правила сложения применяются в каждой паре чисел по отдельности, без «переноса» на следующую пару. Аналогично, при вычитании по модулю 26 одной числовой последовательности из другой правила вычитания применяются к каждой паре чисел по отдельности, без «заимствования» из следующей пары.

Пример 1.1

Сложить по модулю 26 последовательности 15 11 23 06 11 и 17 04 14 19 23

 

Решение

15 11 23 06 11

17 04 14 19 23

32 15 37 25 34

06 15 11 25 08

и в результате 06 15 11 25 08

Если модуль равен 10, то используются числа от 0 до 9; при модуле 2 – только 0 и 1

Арифметика по модулю 2, или, как ее обычно называют, двоичная (бинарная) арифметика, имеет особое значение, поскольку в этом случае сложение и вычитание являются идентичными операциями, т.е всегда дают одинаковый результат, а именно:

 

0 0 1 1 0 0 1 1

+ 0 1 0 1- 0 1 0 1

0 1 1 2 0 -1 1 0

0 1 1 0 0 1 1 0 (mod 2) в обоих случаях.

 

<== предыдущая лекция | следующая лекция ==>
Коды, обнаруживающие и исправляющие ошибки | Моноалфавитные шифры

Дата добавления: 2014-01-03; Просмотров: 955; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.006 сек.