КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Принцип работы однофазных трансформаторов
Принцип работы однофазных трансформаторов рассмотрим по схеме рис.10.2. При подключении источника напряжения в первичной обмотке трансформатора, возникает ток . Далее будем пользоваться действующими значениями используемых физических величин.
Ток приводит к появлению магнитодвижущей силы первичной обмотки
. (10.1) Магнитодвижущая сила возбуждает в магнитопроводе магнитный поток причем . (10.2) Магнитный поток индуцирует в первичной обмотке трансформатора ЭДС самоиндукции , а во вторичной обмотке - ЭДС взаимной индукции . Замкнем цепь вторичной обмотки. Под воздействием ЭДС взаимной индукции через нагрузку Z2 потечет ток I2 , возникает магнитодвижущая сила F2, и магнитный поток Ф2 , причем
. (10.3) Для указанных на рис.10.2 направлений намотки обмоток трансформатора и выбранных положительных направлений токов I1 и I2 магнитные потоки Ф1 и Ф2 встречны. Поэтому в магнитопроводе создается результирующий магнитный поток
Рис. 10.2
. (10.4) Этот поток пересекает витки обоих обмоток трансформатора и наводит в них результирующие ЭДС е1 и е2. Помимо основного магнитного потока Ф (по 10.4), в реальном трансформаторе существуют потоки рассеяния первичной и вторичной обмоток. Для количественной оценки потоков и вводят понятие эквивалентной индуктивности рассеяния так, что
; . Кроме того, обмотки реального трансформатора обладают активными сопротивлениями R1 и R2. Чтобы учесть перечисленные величины при анализе работы трансформатора, переходят к его схеме замещения (рис.10.3). Часть схемы, выделенная на рис. 10.3 пунктиром, не имеет активных сопротивлений и потоков рассеяния, а поэтому называется идеализированным трансформатором. К нему применимы все соотношения, полученные в лекции №8. Но для получения простых и наглядных соотношений параметров трансформатора необходимо преодолеть еще одну трудность. Дело в том, что трансформатор в расчетном эквиваленте представляет собой нелинейную цепь. Значит, к его анализу, необходимо применять теорию нелинейной алгебры. Чтобы уйти от этого, гистерезисную зависимость заменяют эквивалентным эллипсом (рис.10.4), построенным так, что его площадь не менее чем на 95% перекрывает площадь петли гистерезиса.
Рис. 10.3
Рис. 10.4
Если теперь зависимости , ; выражать через параметры эллипса, то возникающие за счет отклонения от петли гистерезиса погрешности оказываются пренебрежимо малыми для практических целей. Главное в том, что применение эквивалентного эллипса позволяет перейти к простым линейным выражениям в представлении величин В (t) и Н (t):
; (10.5)
, (10.6)
где - сдвиг фазы между Н и В. От выражений (10.5) и (10.6) легко перейти к комплексной показательной форме представления, т.е.
; , (10.7)
Учитывая соотношения (8.14) и (8.15), связь между напряжением и магнитной индукцией представим в виде:
, а связь между током и напряженностью магнитного поля выражением:
. (10.8)
Теперь можно перейти к оценке основных параметров трансформатора. Учитывая (8.14) и (8.15) определяем напряжение на первичной и вторичной обмотках трансформатора:
, (10.9)
. (10.10)
Эти напряжения полностью уравновешиваются ЭДС первичной и вторичной обмоток:
, (10.11)
. (10.12)
Отношение (10.10) к (10.9):
(10.13)
называется коэффициентом трансформации. Подставим в выражение для значение Ф из (10.4):
. (10.14) Если разомкнуть цепь вторичной обмотки, то ее ток I2 станет равным нулю. При этом в цепи первичной обмотки будет протекать ток холостого хода, т.е. I1 = I1x, а выражение (10.14) примет вид
. (10.15)
Но - это напряжение источника. Оно не зависит от режима работы трансформатора. Значит левые части равенств (10.14) и (10.15) равны. Отсюда следует, что равны и правые части. Приравнивая их, определим ток холостого хода трансформатора.
. (10.16)
Последнее выражение показывает, что ток холостого хода равен разности токов первичной и вторичной обмоток, причем ток вторичной обмотки пересчитан к виткам первичной обмотки. Ток холостого хода мал и у мощных трансформаторов составляет единицы процентов от номинального значения. Произведение называют приведенным током вторичной обмотки. Кроме для оценки качеств трансформатора пользуются приведенным сопротивлением нагрузки и приведенным напряжением вторичной обмотки . Определим их значения. Для этого выразим магнитный поток Ф из (10.10)
. (10.17)
Подставим (10.17) в (10.9):
. Домножим и разделим последнее выражение на коэффициент . Перегруппировав множители, получим:
. (10.18)
В (10.18) - приведенный ток, а - приведенное, т.е. пересчитанное к виткам первичной обмотки, сопротивление нагрузки. Произведение
(10.19)
называется приведенным напряжением вторичной обмотки. Очевидно, что
. (10.20)
С учетом введенных понятий выражение (10.16) для тока холостого хода принимает вид:
. (10.21)
В выражении (10.15) множитель
определяет индуктивность первичной обмотки. Поэтому можно записать:
,
что полностью соответствует закону Ома для цепи с индуктивностью. Для завершения анализа принципа работы построим векторную диаграмму идеализированного трансформатора (рис.10.5). На диаграмме в качестве исходного принимаем вектор магнитного потока . Векторы ЭДС отстают от на 900. Это очевидно из (10.11) и (10.12) по наличию множителя (-j). Векторы равны по величине и соответственно, но
Рис. 10.5 Рис. 10.6
противоположны им по направлению. Вектор тока холостого хода опережает вектор на угол d. Это хорошо видно из (10.8) т.к.
.
Вектор тока вторичной обмотки трансформатора сдвинут относительно вектора на угол j 2, что определяется характером нагрузки . Значение вектора легко найти по (10.21).
,
что и выполнено на диаграмме. Для перехода к реальному трансформатору обратимся к рис. 10.3. Схема рис. 10.3 содержит два электрически не связанных замкнутых контура - цепь первичной и цепь вторичной обмоток. Для каждой из них справедлив второй закон Кирхгофа. Поэтому для цепи первичной обмотки трансформатора справедливо равенство
. (10.22)
Равенство (10.21) показывает, что напряжение источника уравновешивается падением напряжения на комплексном сопротивлении первичной обмотки и наводящейся в ней ЭДС самоиндукции . Эпюры напряжений, соответствующие (10.22) приведены на рис. 10.6.
Для цепи вторичной обмотки трансформатора можно записать равенство
. (10.23)
Эпюры напряжения, соответствующие (10.23) приведены на рис. 10.6.
Дата добавления: 2014-01-03; Просмотров: 466; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |