КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Белковые токсины – экзотоксины
Бактериальные токсины Токсические вещества, синтезируемые бактериями, по своей природе относятся к белкам и липополисахаридам. Липополисахариды (ЛПС) – эндотоксины, локализуются в клеточной стенке бактерий и освобождаются только после их разрушения. Токсические вещества белковой природы подразделяются на полностью секретируемые (экзотоксины), частично секретируемые и несекретируемые. Способность бактерий образовывать белковые токсины называется токсигенностью. Установлено, что у одних видов бактерий – (Сorynebacterium diphtheriae, Staph. aureus) гены токсигенности (tox+ -ген) локализованы в ДНК умеренного фага, у других (E. соli, B. anthracis) – в плазмидах, у холерного вибриона – в хромосоме. Образование токсина не является обязательным видовым признаком, т.к. все известные токсигенные бактерии могут существовать, не продуцируя токсины. В настоящее время описано свыше 80 белковых токсинов, которые отличаются друг от друга по молекулярной массе, химической структуре, клеточным «мишеням» макроорганизма и биологической активности. Одни из них являются термолабильными, другие относительно термостабильными. Так, например, термолабильный дифтерийный токсин, гистотоксин, разрушается при 60 0С в течение часа, а столбнячный – в течение 20 мин. Термостабильные токсины клостридий ботулизма Cl. botulinum, кишечной палочки, стафилококков могут переносить кратковременное кипячение. Биологическая активность белковых токсинов проявляется в специфичности токсического действия, антигенных и иммуногенных свойствах. Специфичность токсического действия определяется избирательной фиксацией токсина на рецепторах клеток-«мишеней» определенных тканей (эпителиальной, нервной и др.) организма человека и животных. Итак, патогенные бактерии продуцируют загадочные субстанции, которые прямо или косвенно оказывают токсическое действие на клетки и организм хозяина. Экзотоксины – это секретируемые микробные протеины, обычно ферменты, которые убивают клетки хозяина в исключительно маленьких концентрациях. При многих инфекционных болезнях токсины, действительно, определяют их основные симптомы. Это дифтерия, коклюш, холера, сибирская язва, ботулизм, столбняк, гемолитический уремический синдром и др. Например, при дифтерии сами коринебактерии не проникают за пределы входных ворот инфекции. За счет дифтерийных экзотоксинов создаются условия для возникновения дифтерического воспаления в месте проникновения возбудителя в организм и развитие различных органных поражений с нарушением функций и структуры жизненно важных органов и систем организма. Организация и механизм действия токсической молекулы. Большинство белковых токсинов представляют собой А-В структуру. Эта структура предполагает наличие двух компонентов – В-субъединицы, которая участвует в связывании токсина с рецептором на поверхности клетки хозяина и способствует транспортировке токсина в клетку хозяина; и А-субъединицы – проявляющей энзиматическую (токсическую) активность в клетке хозяина. Структура В-доменов зависит от структуры рецепторов-мишеней, с которыми взаимодействует токсин. По механизму действия все токсины подразделяют на 5 типов: Порообразующие токсины – повреждающие мембрану (образование трансмембранных пор, приводящих клетку к лизису); Ингибирующие синтез белка (субстратами для этих токсинов служат факторы элонгации и рибосомальная РНК); Генерирующие образование вторичных мессенджеров ( посредников ) – например, цитотоксический некротический фактор (CNF); Протеолитические токсины - эти самые токсичные токсины имеют и наиболее сложную молекулу; Активаторы иммунного ответа – действуют непосредственно на Т- клетки и антигенпрезентирующие клетки иммунной системы. 1. Порообразующие токсины. К ним относят бактериальные токсины, функционирующие посредством вставки в плазматическую мембрану хозяина и формирующие в ней трансмембранные поры, приводящие клетку к лизису. Механизм их действия хорошо изучен на примере альфа-токсина S.aureus, рассматриваемого как прототип пороформирующего цитотоксина. Стафилококковый альфа-токсин является цитолитическим в отношении различных типов клеток. К другим членам RTX-семейства относят гемолизин E.coli (HlyA), аденилатциклазу Bordetella pertussis (коклюшный), лейкотоксин Pasterella haemolitica. Порообразующие токсины повышают проницаемость поверхностной мембраны эритроцитов (гемолизины) и лейкоцитов (лейкоцидины), вызывая гемолиз эритроцитов и разрушение лейкоцитов. Образование поры включает целый каскад вторичных реакций, приводящих к другим патологическим последствиям (активация эндонуклеаз, высвобождение цитокинов и медиаторов воспаления и др.). 2. Ингибирующие синтез белка. Субстратами для этих токсинов служат факторы элонгации и рибосомальная РНК. Дифтерийный токсин и экзотоксин A псевдомонад являются специфическими АДФ-рибозилтрансферазами, которые рибозилируют фактор элонгации 2 и, таким образом инактивируя его, подавляют синтез белка в клетках. Шигатоксин (Stx -токсин), так же называемый веротоксином, продуцируется Shigella dysenteriae первого серотипа и сравнительно недавно появившимися Stx -продуцирующими штаммами E. coli (STEC). Stx- токсины имеют типичную А-В структуру: энзиматически активную А-субъединицу, нековалентно связанную с 1-5 В-субъединицами. В результате действия этих токсинов происходят структурные изменения в рибосомальной РНК, синтез белка прекращается и клетка гибнет. 3. Генерирующие образование вторичных мессенджеров (посредников) – цитонекротические факторы ( CNF1). Бактериальные токсины могут влиять на функцию отдельных белков эукариотической клетки, непосредственно не приводя ее к гибели. Для этого они активируют так называемых вторичных посредников, которые способны в большой степени усиливать и искажать клеточную реакцию на внеклеточные сигналы, нарушая клеточное деление. Цитотоксины – блокируют синтез белка на субклеточном уровне, нарушают клеточное деление. Например, дифтерийный гистотоксин, токсин синегнойной палочки выводят из строя фермент трансферазу 2, ответственную за наращивание полипептидной цепи на рибосоме. К этому типу принадлежат токсины с энтеропатогенной активностью и дермонекротоксины, поражающие соответствующие ткани и органы. Эукариотические клетки, подвергнутые воздействию CNF1, приобретают характерный вид. У них наблюдается «рифление» мембраны, формируется локальное сжатие актиновых нитей. Репликация ДНК при отсутствии клеточного деления, приводит к образованию многоядерных клеток. Внутрикожное введение CNF1 вызывает длительное воспаление и образование некротического очага. 4. Протеолитические токсины (протеазы). Ботулинический и столбнячный токсины (оба цинк-металлоэндопротеазы), в опытах на животных обнаруживают наименьшую из известных LD50. Удивительно, насколько различную клиническую картину дают поражения этими токсинами, имеющими столь значительное сходство в структуре, энзиматической активности и мишенях среди клеток нервной системы, но при этом различающиеся путями проникновения в макроорганизм. Например, ботулинический токсин проникает в организм энтерально и вызывает вялые параличи периферических нервов. Столбнячный же токсин, образуясь на поверхностях ран, колонизированных Clostridium tetani, приводит к спастическим параличам через поражение ЦНС. Летальный фактор B.anthracis также относится к разряду протеаз. 5. Активаторы иммунного ответа. Самое большое семейство токсинов данного типа называют токсинами -суперантигенами (PTSAg). Они могут действовать непосредственно на Т-клетки и антигенпрезентирующие клетки иммунной системы. Это приводит к массивной пролиферации более 20% периферических Т-клеток. Следствием Т-клеточной экспансии является массивное высвобождение интерлейкинов (1, 2 и 6 типов), гамма-интерферона, факторов некроза опухолей (альфа и бета) и др. Совместно эти цитокины вызывают гипотензию, высокую температуру и диффузные эритематозные высыпания. Токсины данного типа характерны для случайных и факультативных паразитов. Иммуногенные свойства белковых токсинов проявляются в способности вызывать иммунный ответ со стороны макроорганизма, в частности, индуцировать синтез специфических антител – антитоксинов, нейтрализующих гомологичный токсин. Отличительной особенностью ряда белковых токсинов, например, столбнячного, дифтерийного, ботулинического, является их способность под действием 0,5 – 0,4% формалина и при температуре – 38–50 0С утрачивать свою ядовитость, сохраняя при этом иммуногенные свойства. Такие токсины получили название анатоксинов. Они применяются в качестве вакцин для профилактики и лечения одноименных заболеваний.
Таким образом, свойства экзотоксинов сводятся к следующему: состоят из белковых веществ, обладают свойствами ферментов, некоторые получены даже в кристаллическом виде; легко диффундируют из клетки в окружающую среду; высокотоксичны, характеризуются избирательным поражением клеток некоторых органов и тканей, в основном термолабильны, обладают антигенными свойствами, под действием формалина переходят в анатоксин. Эндотоксины(только у Гр-) Эндотоксины прочно связаны с телом бактериальной клетки. Свойство бактерий образовывать токсические вещества, вызывающие симптомы интоксикации, в том числе выделять в окружающую среду при их разрушении эндотоксины, называется токсичностью. В отличие от белковых токсинов, эндотоксины термостабильны и образуются Гр- бактериями, выделяясь в окружающую среду только после гибели бактериальной клетки. Это возбудители брюшного тифа, паратифов, гонореи, бруцеллеза, туляремии, менингита и многие др. патогенные Гр- бактерии. Это сложные белковолипополисахаридные комплексы, которые в лабораторных условиях можно получить путем экстракции трихлоруксусной кислотой. В отличие от белковых токсинов, они термостабильны; не обладают органотропностью; не обладают специфичностью действия; менее токсичны; невозможно получение анатоксинов. Симптомы интоксикации при заболеваниях, вызванных Гр- микробами, однотипны и связаны с действием образующихся медиаторов воспаления. ЛПС запускает синтез более 20 различных биологически активных веществ, которые обусловливают патогенез эндотоксикоза и обладают пирогенным действием. Основной точкой приложения являются макрофаги. Эндотоксины менее токсичны, поражают организм в больших дозах, скрытый период у них исчисляется часами, избирательное действие выражено слабо. Они термоустойчивы, некоторые эндотоксины выдерживают кипячение и автоклавирование. При введении больших доз вызывают стандартную реакцию: наблюдается угнетение фагоцитоза, слабость, одышка, расстройство кишечника, понижение температуры, падение сердечной деятельности. У людей поступление эндотоксина в кровяное русло приводит к лихорадке, лейкопении, гипогликемии, гипотонии. Большие дозы эндотоксина могут привести к токсико-септическому шоку. Небольшие дозы эндотоксина, образующиеся постоянно представителями нормальной микрофлоры тела человека в кишечнике, оказывают благоприятное стимулирующее воздействие на клетки иммунной системы макроорганизма, что ведет к повышению неспецифической защиты макроорганизма, усилению его устойчивости к инфекционным заболеваниям и увеличению противоопухолевой активности клеток. В отличие от белковых токсинов, из эндотоксинов нельзя получить анатоксины. Резюме о патогенности Таким образом, патогенность носит сложный полидетерминантный характер. Основными материальными носителями патогенности микробов являются морфологические структуры клетки, ферменты и токсины. В макроорганизме они оказывают не изолированное, а комплексное воздействие. Например, нейраминидаза холерного вибриона способствует адгезии возбудителя к эпителиальным клеткам слизистой оболочки тонкого кишечника и взаимодействию его энтеротоксина с ганглиозидными рецепторами клеток, а гемоцитолизин, образуя каналы в мембранах клеток, ведет их к осмотическому повреждению и делает аденилатциклазу клеточных мембран более доступной. Один и тот же фактор патогенности может участвовать в различных фазах инфекционного процесса, а в одной и той же фазе могут участвовать различные факторы патогенности. Например, капсулы бактерий способствуют их адгезии, препятствуют фагоцитозу и экранируют компоненты клетки, активирующие комплемент по альтернативному пути. Эндотоксин и инвазивные белки Гр- кишечных палочек не только способствуют их инвазии и развитию симптомов интоксикации, но и защищают бактерии от действия соляной кислоты и ферментов в желудке.
Дата добавления: 2014-01-03; Просмотров: 11310; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |