Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Биологическая изменчивость и адаптация видов





Эволюциионная гипотеза и креационизм - две альтернативные точки зрения на происхождение жизни и её изменения. Обе гипотезы приводят аргументы в свою пользу. Никакого отношения к вере истинно научный креационизм не имеет.

Факты не говорят сами за себя - они требуют интерпретации в рамках того или иного мировоззрения Ведущие эволюционисты - материалисты, а многие из них - ярые атеисты. Креационисты же, напротив, признают, что верят в Сотворение мира. Хотя креационисты имеют дело с теми же фактами, что и эволюционисты, они интерпретируют эти факты на основе своего мировоззрения, и приходят к обоснованным научным выводам.

Приверженцы обоих мировоззрений - учат, что организмы изменяются на протяжении времени, а мутации и естественный отбор играют важную роль в этом процессе. Но эволюционисты предполагают, что изменения постепенно повышают содержание информации, так что одна-единственная живая клетка (которая, по их утверждению, произошла из неживой материи) явилась предком всех остальных форм жизни. Креационисты же считают, что каждый род живых существ был особо сотворен, и что изменения либо уничтожают информацию, либо оставляют ее содержание неизменным.

Со времен Дарвина эволюционисты предсказывали, что в летописи окаменелостей должно обнаруживаться множество промежуточных форм, связывающих один род организмов с другим. На самом же деле, животные появляются в летописи окаменелостей внезапно и уже полностью сформировавшимися, а так называемых "переходных форм" крайне мало и все они весьма спорны. Кроме того, в большинстве случаев функциональные промежуточные формы невозможно даже представить. Так, птицы - уникальные существа, с крыльями и перьями, созданными для полета, с особыми легкими, кардинально отличающимися от легких любых рептилий. Некоторые эволюционисты полагают, что птицы произошли от планирующих рептилий, обитавших на деревьях; другие же считают, что птицы произошли от наземных динозавров. Представители каждой из этих групп ученых так убедительно опровергают аргументы противников, что единственно логичным выводом остается следующий: птицы вообще не эволюционировали от других животных. Китообразные - млекопитающие, созданные для жизни в воде и наделенные множеством уникальных свойств. Учение об эволюции утверждает, что киты произошли от наземных животных, и в подтверждение этой идеи предлагает ряд "промежуточных форм". Однако при тщательном изучении выясняется, что ни одна из них не выдерживает критики. Люди сильно отличаются от обезьян - прежде всего, им свойственны разум и речь. В учении об эволюции представлена серия так называемых "черепов обезьянолюдей". Однако факты говорят о том, что люди и австралопитеки принадлежат к разным родам. Об этом свидетельствуют, в частности, результаты исследования полукружных каналов уха и канала язычного нерва. Сходство ДНК человека и шимпанзе преувеличено; различия же выражаются в гигантском информационном барьере. И сходства, и различия прекрасно объясняются в рамках теории общего Создателя. Адекватные изображения эмбрионов показывают, что эмбрионы представителей разных родов сильно отличаются друг от друга, вопреки заявлениям учения об эволюции.



Живые организмы содержат громадные количества особой сложной информации, закодированной в ДНК. Любопытно, что наличие кодированной информации служит критерием определения того, имеют ли поступающие из космоса сигналы разумный источник. ДНК - самая эффективная в мире система хранения и поиска информации. Информация, хранимая в ДНК, включает "чертежи" всех необходимых для жизни ферментов и "рецепты" создания сложных органов. В их число входят эхолокационные системы дельфинов и летучих мышей, вращательный механизм, управляющий движением жгутика бактерий, или, скажем, жизненно необходимый фермент, отвечающий за синтез молекулы АТФ. Все эти структуры гораздо сложней любого творения человеческих рук. Принципы функционирования многих из них вдохновили людей на создание новых механизмов: например, устройство глаз омара легло в основу рентгеновских телескопов. Таким образом, есть немало оснований серьезно относиться к креационной - модели мира; более того, есть все основания знакомить студентов с аргументами против теории эволюции.

Биотехноло́гия — дисциплина, изучающая возможности использования живыхорганизмов, их систем или продуктов их жизнедеятельности для решения технологических задач, а также возможности создания живых организмов с необходимыми свойствами методом генной инженерии.

Биотехнологией часто называют применение генной инженерии в XX—XXI веках, но термин относится и к более широкому комплексу процессов модификации биологических организмов для обеспечения потребностей человека, начиная с модификации растений и одомашненных животных путем искусственного отбора игибридизации. С помощью современных методов традиционные биотехнологические производства получили возможность улучшить качество пищевых продуктов и увеличить продуктивность живых организмов.

Несмотря на то, что первые успешные опыты по трансформации клеток экзогенной ДНК были поставлены ещё в 1940-е года Эйвери,Маклеодом и Маккарти, первый коммерческий препарат человеческого рекомбинантного инсулина был получен только в 1970-е года. Введение чуждых для генома бактериальных клеток генов производят с использованием т. н. векторных ДНК, например плазмиды, присутствующие в бактериальных клетках, а также бактериофаги и другие мобильные генетические элементы могут быть использованы в качестве векторов для переноса экзогенной ДНК в клетку реципиента.

Получить новый ген можно:

Вырезанием его из геномной ДНК хозяина при помощи рестрицирующей эндонуклеазы, катализирующей разрыв фосфодиэфирных связей между определёнными азотистыми основаниями в ДНК на участках с определённой последовательностью нуклеотидов;

Химико-ферментативным синтезом;

Синтезом комплементарной ДНК на основе выделенной из клетки матричной РНК при помощи ферментов ревертазы и ДНК-полимеразы, при этом изолируется ген, не содержащий незначащих последовательностей и способный экспрессироваться при условии подбора подходящей промоторной последовательности в прокариотических системах без последующих модификаций, что чаще всего необходимо при трансформации прокариотических систем эукариотическими генами, содержащими интроны и экзоны.

После этого обрабатывают векторную молекулу ДНК рестриктазой с целью образования двуцепочечного разрыва и в образовавшуюся «брешь» производится «вклеивание» гена в вектор используя фермент ДНК-лигазу, а затем такими рекомбинантными молекулами трансформируют клетки реципиента, например клетки кишечной палочки. При трансформации с использованием в качестве вектора, например, плазмидной ДНК необходимо, чтобы клетки были компетентными для проникновения экзогенной ДНК в клетку, для чего например используют электропорацию клеток реципиента. После успешного проникновения в клетку экзогенная ДНК начинает реплицироваться и экспрессироваться в клетке.

Трансгенные растения — это те растения, которым «пересажены» гены других организмов.

Картофель, устойчивый к колорадскому жуку, был создан путём введения гена выделенного из генома почвенной тюрингской бациллы Bacillus thuringiensis, вырабатывающий белок Cry, представляющий собой протоксин, в кишечнике насекомых этот белок растворяется и активируется до истинного токсина, губительно действующего на личинок и имаго насекомых, у человека и других теплокровных животных подобная трансформация протоксина невозможна и соответственно этот белок для человека не токсичен и безопасен. Опрыскивание спорами Bacillus thuringiensis использовалось для защиты растений и до получения первого трансгенного растения, но с низкой эффективностью, продукция эндотоксина внутри тканей растения существенно повысило эффективность защиты, а также повысило экономическую эффективность ввиду того, что растение само начало продуцировать защитный белок. Путём трансформации растения картофеля при помощи Agrobacterium tumefaciensбыли получены растения, синтезирующие этот белок в мезофилле листа и других тканях растения и соответственно непоражаемые колорадским жуком. Данный подход используется и для создания других сельскохозяйственных растений, резистентных к различным видам насекомых.

Трансгенные животные

В качестве трансгенных животных чаще всего используются свиньи. Например, есть свиньи с человеческими генами — их вывели в качестве доноров человеческих органов.

Японские генные инженеры ввели в геном свиней ген шпината, который производит фермент FAD2, способный преобразовывать жирные насыщенные кислоты в линолевую — ненасыщенную жирную кислоту. У модифицированных свиней на 1/5 больше ненасыщенных жирных кислот, чем у обычных.

Зелёные светящиеся свиньи — трансгенные свиньи, выведенные группой исследователей из Национального университета Тайваня путём введения в ДНК эмбриона геназелёного флуоресцентного белка, позаимствованного у флуоресцирующей медузы Aequorea victoria. Затем эмбрион был имплантирован в матку самки свиньи. Поросята светятся зелёным цветом в темноте и имеют зеленоватый оттенок кожи и глаз при дневном свете. Основная цель выведения таких свиней, по заявлениям исследователей, — возможность визуального наблюдения за развитием тканей при пересадке стволовых клеток.

Биоинженерия или биомедицинская инженерия — это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счет междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженерия/биомедицинская инженерия — это применение технических подходов для решения медицинских проблем в целях улучшения охраны здоровья. Эта инженерная дисциплина направлена на использование знаний и опыта для нахождения и решения проблем биологии и медицины. Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач. Среди важных достижений биоинженерии можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения.

Биогеоценоз –это сообщество видов, взаимодействующих в среде обитания. Важно подчеркнуть взаимодействие особей не только друг на друга, но и с окружающей их атмосферой, гидросферой и литосферой. Биогеоценоз состоит из живой части – биоценоза и неживой – экотопа. Непрерывное взаимодействие биоценоза и экотопа определяет круговорот веществ.

Энергетическое обеспечение биогеоценоза происходит, в основном, за счет солнечной энергии. Для этого необходимы автотрофные организмы-продуценты биотических органических соединений из компонентов неживой природы. Такими продуцентами являются, главным образом, фотосинтезирующие зеленые растения. Они аккумулируют солнечную энергию в растительной биомассе, которая составляет до 99% всей живой массы на планете Земля.

Гетеротрофные организмы – потребители (консументы) готовых органических веществ. Их делят на потребителей первого порядка – растительноядные животные (коровы, овцы), потребителей второго и следующих порядков – плотоядные животные (волки, люди) и деструкторов – разрушителей органического вещества – детритоядные( навозные жуки, падальщики).

Чем выше порядок гетеротрофных организмов, тем ниже их суммарная биомасса и энергия, что отражается в структуре экологических пирамид (рис. 3).

 

Рисунок 3. Схема экологической пирамиды (масштаб условный, расчет на питание 1 источником).

│биомасса│ энергия

│ │

┌─┐ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┼ ─ ─ ─ ─┼ ─ ─ ─ ─ ─

│хищник │48 кг │ 35 000 Дж

┌─┴─┴───┐ ─ ─ ─ ─ ─ ─ ─ ┼ ─ ─ ─ ─┼ ─ ─ ─ ─ ─

│телята │ │1035 кг │505 000 000 Дж

┌───────────┴───────┴─────────────┐ ┼ ─ ─ ─ ─┼ ─ ─ ─ ─ ─

│ люцерна │ │8211 кг │5 063 000 000 Дж

┌ ┴─────────────────────────────────┘ ┴ ─ ─ ─ ┴─ ─ ─ ─┐





Дата добавления: 2014-01-03; Просмотров: 664; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.