Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Антивитамины. Витамин Антивитамин Механизм действия антивитамина Применение антивитамина 1




 

Витамин Антивитамин Механизм действия антивитамина Применение антивитамина
1. Пара-амино-бензойная кислота (ПАБК) Сульфанил-амиды (стрептоцид, норсульфазол, фталазол) Сульфаниламиды – структурные аналоги ПАБК. Они ингибируют фермент путем вытеснения ПАБК из комплекса с ферментом, синтезирующим фолиевую кислоту, что ведет к торможению роста бактерий. Для лечения инфекционных заболеваний.
2. Фолиевая кислота Птеридины (аминоптерин, метотрексат). Встраиваются в активный центр фолатзависимых ферментов и блокирует синтез нуклеиновых кислот (цитостатическое действие), угнетается деление клеток. Для лечения острых лейкозов, некоторых форм злокачественных опухолей
3. Витамин К Кумарины (дикумарин, варфарин, тромексан). Кумарины блокируют образование протромбина, проконвертина и др. факторов свертывания крови в печени (оказывают противосвертывающее действие). Для профилактики и лечения тромбозов (стенокардия, тромбофлебиты, кардиосклероз и др.).
4. Витамин РР Гидразид изоникотиновой кислоты (изониазид) и его производные (тубазид, фтивазид, метозид). Антивитамины включаются в структуры НАД и НАДФ, образуя ложные коферменты, которые не способны участвовать в окислительно-восстановительных и других реакциях Биохимические системы микобактерий туберкулеза наиболее чувствительны к этим антивитаминам. Для лечения туберкулеза.
5. Тиамин (В1) Окситиамин, пиритиамин. Антивитамины замещают коферменты тиамина в ферментативных реакциях. Для создания эксперимен-тального В1- авитаминоза.
6. Рибофла- вин (В2) Изорибофлавин, дихлоррибо-флавин, галактофлавин. Антивитамины замещают коферменты рибофлавина в ферментативных реакциях. Для создания в экспериментах гипо- и арибофлави-нозов.
7. Пиридок-син (В6) Дезоксипири-доксин, циклосерин Антивитамин замещает пиридоксалевые коферменты в ферментативных реакциях. Для создания эксперименталь-ной пиридоксиновой недостаточности

Антивитамины нашли широкое применение в клинической практике в качестве антибактериальных и противоопухолевых средств, тормозящих синтез белков и нуклеиновых кислот в бактериальных и опухолевых клетках.


ГЛАВА 16
УГЛЕВОДЫ ТКАНЕЙ И ПИЩИ – ОБМЕН И ФУНКЦИИ

 

Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. Углеводы участвуют во многих метаболических процессах, но прежде всего они являются основными поставщиками энергии. На долю углеводов приходится примерно 75 % массы пищевого суточного рациона и более 50 % от суточного количества необходимых калорий. Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды; олигосахариды; полисахариды.

По функциям углеводы условно можно подразделить на две группы:

1. Углеводы с преимущественно энергетической функцией. К ним относится глюкоза, гликоген, крахмал.

2. Углеводы с преимущественно структурной функцией. К ним относятся гликопротеины, гликолипиды, гликозаминогликаны, у растений – клетчатка.

Углеводы выполняют ряд важных функций:

1. Энергетическую.

2. Структурную – входят в состав мембран, глюкозаминогликаны содержатся в соединительной ткани, пентозы входят в состав нуклеиновых кислот.

3. Метаболическую – из углеводов могут синтезироваться соединения других классов – липиды, аминокислоты и др.

4. Защитную – входят в состав иммуноглобулинов.

5. Рецепторную – входят в состав гликопротеинов, гликолипидов.

6. Специфическую – гепарин и др.

 


Таблица 16.1

Углеводы пищи (300 – 500 г. в сутки)

 

Углеводы Представители Пищевые продукты Количество г/сутки
Полисаха-риды Крахмал, амилоза, аминопектин Хлеб, крупа, рис, картофель   250-400
Дисаха-риды Сахароза, лактоза, мальтоза Сахар, кондитерские изделия, молоко   50-100
Моносаха-риды Глюкоза, фруктоза, галактоза Фрукты, ягоды, соки   0-50

 

Пищевые волокна (клетчатка) – это компоненты растительных клеток, которые не расщепляются ферментами животного организма. Основной компонент пищевых волокон – целлюлоза. Рекомендуемое суточное потребление клетчатки – не менее 25 г.

 

Биологическая роль клетчатки

1. Утилизируется микрофлорой кишечника и поддерживает ее нормальный состав.

2. Адсорбирует воду и удерживает ее в полости кишечника.

3. Увеличивает объем каловых масс.

4. Нормализует давление на стенки кишечника.

5. Связывает некоторые токсические вещества, образующиеся в кишечнике, а также адсорбирует радионуклиды.

 

Переваривание углеводов

В слюне содержится фермент α-амилаза, расщепляющая α-1,4-гликозидные связи внутри молекул полисахаридов.

Переваривание основной массы углеводов происходит в двенадцатиперстной кишке под действием ферментов панкреатического сока – α-амилазы, амило-1,6-гликозидазы и олиго-1,6-гликозидаза (терминальной декстриназы).

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс – гидролизует сахарозу и изомальтозу, расщепляя α-1,2 – и α-1,6-гликозидные связи. Кроме того обладает мальтазной и мальтотриазной активностью, гидролизуя α-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала).

Гликоамилазный комплекс – катализирует гидролиз α-1,4-связей между глюкозными остатками в олисахаридах, действуя с восстанавливающего конца. Расщепляет также связи в мальтозе, действуя как мальтаза.

β-гликозидазный комплекс (лактаза) – расщепляет β-1,4-гликозидные связи в лактозе.

Трегалаза – также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе – дисахариде, содержащемся в грибах. Трегалоза состоит из двух глюкозных остатков, связанных гликозидной связью между первыми аномерными атомами углерода.

 




Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 970; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.