Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение эконометрических моделей

Проблемы идентификации.

1.Косвенный, двухшаговый и трехшаговый метод наименьших квадратов, общая схема алгоритма расчетов.

Алгоритм косвенного метода наименьших квадратов:

• Структурная модель преобразовывается в приведенную форму модели.

• Для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты.

• Коэффициенты приведенной формы модели трансформируются в параметры структурной формы модели.

Алгоритм двухшагового метода наименьших квадратов:

• Определяется приведенная форма модели, и находятся на ее основе оценки теоретических значений эндогенных переменных.

• Определяются структурные коэффициенты модели по данным теоретических (расчетных) значений эндогенных переменных. Косвенный МНК. Рассмотрим приведенную форму системы , в которой переменные -не мультиколлинеарны. роцедура статистического оценивания структурных параметров i-го уравнения: На 1-м этапе оцениваем с помощью обычного МНК все параметры приведенной формы. На 2-м этапе используются соотношения связывающие структурные параметры i-го уравнения системы с параметрами приведенной формы. В случае точной идентифицируемости i-го уравнения структурной формы его параметры и однозначно определяются из системы по значениям . Подставив в эти соотношения вместо их оценки и решив систему уравнений относительно и , мы получим состоятельные оценки и структурных параметров i-го уравнения системы.

В случае неидентифицируемости анализируемого уравнения структурной формы число взаимно независимых связей между , и будет меньше общего числа неизвестных. Поэтому без дополнительной информации нельзя определить значения структурных коэффициентов и .

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. Двухшаговый метод наименьших квадратов (ДМНК) использует следующую центральную идею: на основе приведенной формы модели получают для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Затем они подставляются вместо фактических значений и применяют обычный МНК к структурной форме сверхидентифицируемого уравнения. В свою очередь, сверхидентифицируемая структурная модель может быть двух типов: либо все уравнения системы сверхидентифицируемы, либо же система содержит наряду со сверхидентифицируемыми и точно идентифицируемые уравнения. В первом случае, если все уравнения системы сверхидентифицируемые, для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.

 

<== предыдущая лекция | следующая лекция ==>
Тема № 7. Многошаговый метод наименьших квадратов | Проблемы идентификации
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 588; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.