Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Операции объединения, пересечения, взятия разности. Совмесимость по объединению





Особенности теоретико-множественных операций реляционной алгебры

 

Хотя в основе теоретико-множественной части реляционной алгебры Кодда лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями.

 

 

Начнем с операции объединения отношений (все, что будет говориться по поводу объединения, очевидным образом переносится на операции пересечения и взятия разности отношений). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Напомним, что в теории множеств

 

· результатом объединения двух множеств A{a} и B {b} является такое множество C {c}, что для каждого с либо существует такой элемент a, принадлежащий множеству A, что c=a, либо существует такой элемент b, принадлежащий множеству B, что c=b;

· пересечением множеств A и B является такое множество C {c}, что для любого c существуют такие элементы a, принадлежащий множеству A, и b, принадлежащий множеству B, что c=a=b;

· разностью множеств A и B является такое множество C {c}, что для любого c существует такой элемент a, принадлежащий множеству A, что c=a, и не существует такой элемент b, принадлежащий B, что c=b.

           
     


Объединение Пересечение Взятие разности

 

Рис. 3.2. Иллюстрация результатов теоретико-множественных операций

Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения двух произвольных отношений (с разными заголовками), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т.е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.

 

Эти соображения приводят к введению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. В развернутой форме это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене (эта развернутая формулировка, вообще говоря, является излишней, но она пригодится нам в следующем абзаце).

 

Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения “почти” совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа объединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования.



 

Для иллюстрации операций объединения, пересечения и взятия разности предположим, что в базе данных содержатся два отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_1и СЛУЖАЩИЕ _В_ПРОЕКТЕ_2с одинаковыми схемами {СЛУ_НОМЕР,СЛУ_ИМЯ,СЛУ_ЗАРП,СЛУ_ОТД_НОМЕР} (по причине очевидности, имена доменов опущены). Каждое из отношений содержит данные о служащих, участвующих в соответствующем проекте. На рис. 3.3 показано примерное наполнение каждого из двух отношений (некоторые служащие участвуют в обоих проектах).

 

 





Дата добавления: 2014-01-03; Просмотров: 231; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.