Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Операция соединения отношений


 

Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов – соединяемых отношений и третьего операнда – простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b – имена атрибутов отношений A и B, const – литерально заданная константа, и comp-op – допустимая в данном контексте операция сравнения.

 

Тогда по определению результатом операции соединения A JOINT B WHERE comp совместимых по взятию расширенного декартова произведения отношений A и B является отношение, получаемое путем выполнения операции ограничения по условию comp расширенного декартова произведения отношений A и B (A JOINT B WHERE comp º (A TIMES B) WHERE comp).

 

Если тщательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного декартова произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b – имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.

 

В подразделе, касающемся операции ограничения, мы определили трактовку использования в качестве ограничивающего условия произвольного булевского выражения, которое составлено из простых условий над атрибутами отношения-операнда и литеральными константами. Конечно же, и в операции соединения может задаваться произвольное логическое выражение, составленное из простых условий над атрибутами отношений-операндов и константами. Операцию соединения с таким условием comp разумно считать операцией действительно соединения, если оно имеет вид (или может быть преобразовано к виду) comp1 AND (a comp-op b), где a и b – имена атрибутов разных отношений-операндов.

 

Для иллюстрации операций соединения мы немного изменим заголовки и тела отношений, которые использовались ранее в примерах этой лекции. Пусть теперь имеются отношения СЛУЖАЩИЕ{СЛУ_НОМЕР,СЛУ_ИМЯ,СЛУ_ЗАРП,ПРО_НОМ}(атрибут ПРО_НОМсодержит номера проектов, в которых участвует каждый служащий) и ПРОЕКТЫ{ПРО_НОМ, ПРОЕКТ_РУК, ПРО_ЗАРП} (ПРО_НОМ– номер проекта, ПРОЕКТ_РУК – имя служащего-руководителя проекта, ПРО_ЗАРП– средняя заработная плата служащих, участвующих в проекте). Примерное содержимое тел отношений СЛУЖАЩИЕи ПРОЕКТЫпоказано на рис. 3.8.

 

<== предыдущая лекция | следующая лекция ==>
Операция взятия проекции | ПРОЕКТЫ

Дата добавления: 2014-01-03; Просмотров: 156; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.