Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Выводимость операции взятия разности


Полнота Алгебры A

 

Покажем, что Алгебра A является полной, т.е. на основе введенных операций выражаются все операции алгебры Кодда, рассмотренной в предыдущей лекции.

 

К настоящему моменту в состав базовых операций Алгебры A входят операция <REMOVE> в качестве аналога операции PROJECT, а также операция переименования атрибутов <RENAME>. UNION является частным случаем операции <OR>, TIMES, INTERSECT и NATURAL JOIN – частные случаи операции <AND>. Нам осталось показать, что через операции Алгебры A выражаются операции взятия разности MINUS, ограничения (WHERE), соединения общего вида (JOIN) и реляционного деления (DIVIDE BY).

 

 

Покажем, что операция MINUS выражается через другие операции Алгебры A. Для наглядности снова воспользуемся отношениями СЛУЖАЩИЕ_В_ПРОЕКТЕ_1и СЛУЖАЩИЕ_В_ПРОЕКТЕ_2c рис. 4.3 (для удобства повторим его в верхней части рис. 4.7). Для простоты (хотя это не существенно) будем предполагать, что множества значений доменов, на которых определены атрибуты СЛУ_НОМЕР,СЛУ_ИМЯ,СЛУ_ЗАРПи СЛУ_ОТД_НОМЕРограничены значениями, содержащимися в телах отношений. Также для удобства покажем результат операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 MINUS СЛУЖАЩИЕ_В_ПРОЕКТЕ_2на рис. 4.7a. Заметим, что тело результата содержит все кортежи первого операнда, кроме кортежей Иванова и Петрова, поскольку они входят и в тело второго операнда.

 

Посмотрим теперь, что является телом результата операции <NOT> СЛУЖАЩИЕ_В_ПРОЕКТЕ_2(рис. 4.7b).В него входят все кортежи, соответствующие схеме отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_2(и схеме отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_1), которые не входят в тело отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_2.В том числе в тело результата этой операции входят и кортежи Сидорова, Федорова и Ивановой из тела отношения СЛУЖАЩИЕ_В_ПРОЕКТЕ_1.

 

Тогда легко видеть, что результат операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 <AND> <NOT> СЛУЖАЩИЕ_В_ПРОЕКТЕ_2(пересечение тела первого операнда с телом результата операции <NOT>) является в точности тем же, что и результат операции СЛУЖАЩИЕ_В_ПРОЕКТЕ_1 MINUS СЛУЖАЩИЕ_В_ПРОЕКТЕ_2 (рис. 4.7c).

 

В общем случае нетрудно доказать, что если отношения r1 и r2 совместимы по объединению, то r1 MINUS r2 = r1 <AND> <NOT> r2.

 

<== предыдущая лекция | следующая лекция ==>
ПРОЕКТЫ_2 | Интерпретация операции ограничения

Дата добавления: 2014-01-03; Просмотров: 295; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.001 сек.