Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рекуррентные соотношения.




Числа Фибоначчи.

 

При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

.

Отсюда видно, что всегда может быть сведён к факториалу от меньшего числа.

Хорошей иллюстрацией к построению рекуррентных соотношений является задача Фибоначчи. В своей книге в 1202 г. итальянский математик Фибоначчи привел следующую задачу. Пара кроликов приносит приплод раз в месяц двух крольчат (самку и самца), причём новорождённые крольчата через два месяца после рождения сами приносят приплод. Сколько кроликов появится через год, если в начале была одна пара кроликов.

Из условия задачи следует, что через месяц будет две пары кроликов, через два месяца приплод даст только первая пара кроликов, появившихся два месяца назад, поэтому всего будет 3 пары кроликов. Ещё через месяц будет уже 5 пар. И так далее.

Обозначим через количество пар кроликов по истечении месяцев с начала года. Тогда через месяц количество пар кроликов можно найти по формуле:

.

Эта зависимость называется рекуррентным соотношением. Слово «рекурсия» означает возврат назад (в нашем случае – возврат к предыдущим результатам).

По условию, и , тогда по соотношению имеем: , , и т.д., .

Определение 1: Числа называются числами Фибоначчи. Это – известная в математике последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, ...

В этой последовательности каждое последующее число является суммой двух предыдущих чисел. И в рекуррентном соотношении также последующий член находится как сумма двух предыдущих членов.

Установим связь между числами Фибоначчи и комбинаторной задачей. Пусть требуется найти число - последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не стоят подряд.

Возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар «предков» данной пары (включая и исходную), а нулями – все остальные месяцы. Например, последовательность устанавливает такую «генеалогию» – сама пара появилась в конце 11-го месяца, ее родители в конце 7-го месяца, «дед» – в конце 5-го месяца, и «прадед» в конце 2-го месяца. Первоначальная пара шифруется последовательностью . Ни в одной последовательности две единицы не могут стоять подряд – только что появившаяся пара не может принести приплод через месяц. Очевидно, различным последовательностям отвечают различные пары и обратно.

Таким образом, число последовательностей с указанными свойствами, равно .

Теорема 1: Число находится как сумма биномиальных коэффициентов:. Если – нечетно, то . Если – четно, то . Иначе: – целая часть числа .



Доказательство: В самом деле, - число всех последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число таких последовательностей, содержащих ровно единиц и нулей, равно , при этом , тогда изменяется от 0 до . Применяя правило суммы, получаем данную сумму.

Это равенство можно доказать иначе. Обозначим:

, .

Из равенства , следует, что . Кроме этого, ясно, что и . Так как обе последовательности и удовлетворяют рекуррентному соотношению , то , и .

Определение 2: Рекуррентное соотношение имеет порядок , если оно позволяет вычислять через предыдущих членов последовательности: .

Например, – рекуррентное соотношение второго порядка, а рекуррентное соотношение 3-го порядка. Соотношение Фибоначчи является соотношением второго порядка.

Определение 3:Решением рекуррентного соотношения является последовательность, удовлетворяющая этому соотношению.

Если задано рекуррентное соотношение ‑ го порядка, то ему удовлетворяют бесконечно много последовательностей, т.к. первые элементов можно задать произвольно. Но если первые элементов заданы, то остальные члены определяются однозначно.

Например, соотношению Фибоначчи кроме рассмотренной выше последовательности 1, 1, 2, 3, 5, 8, 13, 21, ..., могут удовлетворять также и другие последовательности. К примеру, последовательность 2, 2, 4, 8, 12,... строится по тому же принципу. Но если задать начальные члены (их в последовательности Фибоначчи - 2), то решение определяется однозначно. Начальных членов берут столько, каков порядок соотношения.

По известным рекуррентным соотношениям и начальным членам можно выписывать члены последовательности один за другим и таким путем мы можем получить любой её член. Но во многих случаях, нам не нужны все предыдущие члены, а необходим один определенный член. В этом случае удобнее иметь формулу ‑ го члена последовательности.

Мы будем говорить, что некоторая последовательность является решением данного рекуррентного соотношения, если при подстановке этой последовательности соотношение тождественно выполняется.

Например, последовательность является одним из решений соотношения: . Это легко проверить обычной подстановкой.

Определение 4: Решение рекуррентного соотношения ‑ го порядка называется общим, если оно зависит от произвольных постоянных , меняя которые, можно получить любое решение данного соотношения.

Например, для соотношения общим решение будет .

В самом деле, легко проверяется, что оно будет решением нашего соотношения. Покажем, что любое решение можно получить в таком виде. Пусть и – произвольны.

Тогда найдутся такие и , что

Очевидно, для любых , система уравнений имеет единственное решение.

Определение 5: Рекуррентное соотношение называется линейным, если оно записывается в виде:

,

где - числовые коэффициенты.

Для решения произвольных рекуррентных соотношений общих правил, вообще говоря, нет. Однако для решения линейных рекуррентных соотношений есть общие правила решения.

Рассмотрим сначала соотношение 2-го порядка .

Решение этого соотношения основано на следующих утверждениях.

Теорема 2: Если и - являются решением данного рекуррентного соотношения 2-го порядка, то для любых чисел и последовательность также является решением этого соотношения.

Теорема 3: Если число является корнем квадратного уравнения , то последовательность является решением рекуррентного соотношения .

Из теорем 2, 3 вытекает следующее правило решения линейных рекуррентных соотношений 2-го порядка.

Пусть дано рекуррентное соотношение .

1) Составим квадратное уравнение , которое называется характеристическим для данного соотношения. Найдём все корни этого уравнения (даже кратные и комплексные).

2) Составим общее решение рекуррентного соотношения. Его структура зависит от вида корней (одинаковые они или различные).

а) Если это соотношение имеет два различных корня и , то общее решение соотношения имеет вид .

Действительно, из теорем 2, 3 следует, что - решение и система уравнений

- имеет единое решение, т.к. при условии .

Например, для чисел Фибоначчи, имеем . Характеристическое уравнение имеет вид: . Решая последнее уравнение, получим корни:

,

поэтому общее решение соотношения Фибоначчи имеет вид:

.

Для начальных условий , и , т.е. для последовательности получаем для констант и систему:

и ,

поэтому

.

Это выражение для всех натуральных принимает целые значения.

б) Рассмотрим теперь случай, когда корни характеристического уравнения совпадают, т.е. , тогда , , т.е. характеристическое уравнение имеет вид .

В этом случае и рекуррентное соотношение имеет вид:

.

Покажем, что наряду с , выражение - также является решением нашего соотношения. Действительно:

.

И общее решение в этом случае будет равно:

.

Нетрудно видеть, что и здесь можно подобрать так, что будут удовлетворены любые начальные условия.

Замечание: Линейные рекуррентные соотношения с постоянными коэффициентами порядка больше двух, решаются аналогично.

Пусть соотношение имеет вид . Составляем характеристическое уравнение: .

Если все корни характеристического уравнения различны, то общее решение имеет вид: .

Если же, например, , то этому корню соответствуют решения:

данного рекуррентного соотношения. В общем решении этому корню соответствует часть .

Например, решая рекуррентное соотношение:

,

составляем характеристическое уравнение вида: .

Его корни , . Поэтому общее решение есть:

.

 

 





Дата добавления: 2014-01-03; Просмотров: 38; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.80.132.10
Генерация страницы за: 0.02 сек.