Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Температурное поле. Уравнение теплопроводности

Тема 9.Теплопроводность.

Будем рассматривать только однородные и изотропные тела, т.е. такие тела, которые обладают одинаковыми физическими свойствами по всем направлениям. При передачи теплоты в твердом теле, температура тела будет изменяться по всему объему тела и во времени. Совокупность значений температуры в данный момент времени для всех точек изучаемого пространства называется температурным полем:

t = f(x,y,z,τ), (9.1)

где:t –температура тела;
x,y,z -координаты точки;
τ - время.
Такое температурное поле называется нестационарным ∂t/∂i ¹ 0, т.е. соответствует неустановившемуся тепловому режиму теплопроводности
Если температура тела функция только координат и не изменяется с течением времени, то температурное поле называется стационарным:

t = f(x,y,z), ∂t/∂i = 0 (9.2)

Уравнение двухмерного температурного поля:
для нестационарного режима:

t = f(x,y,τ); ∂t/∂z = 0 (9.3)

для стационарного режима:

t = f(x,y), ∂t/∂z = 0; ∂t/∂i = 0 (9.4)

Уравнение одномерного температурного поля:
для нестационарного режима:

t = f(x,τ); ∂t/∂y = ∂t/∂z = 0; ∂t/∂i ¹ 0 (9.5)

для стационарного режима:

t = f(x); ∂t/∂y = ∂t/∂z = 0; ∂t/∂i = 0 (9.6)

Изотермической поверхностью называется поверхность тела с одинаковыми температурой.
Рассмотрим две изотермические поверхности (Рис.9.1) с температурами t и t + ∆t. Градиентом температуры называют предел отношения изменения температуры∆tк расстоянию между изотермами по нормали ∆n, когда стремится к нулю:

gradt = | gradt | = lim[∆t/∆n]∆n→0 = ∂t/∂n (9.7)

 

Температурный градиент-это вектор, направленной по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной температуры t по нормали n:

grad t = ∂t/∂n no, (9.7*)

где: no единичный вектор.

Количество теплоты, проходящее через изотермическую поверхность F в единицу времени называется тепловым потоком – Q, [Вт=Дж/с].
Тепловой поток, проходящий через единицу площади называют плотностью теплового потока – q = Q / F, [Вт/м2]
Для твердого тела уравнение теплопроводности подчиняется закону Фурье:
||Тепловой поток, передаваемая теплопроводностью,||пропорциональна градиенту температуры и площади сечения,||перпендикулярного направлению теплового потока.

Q = -λ∙F∙ ∂t/∂n, (9.8)

или

q = -λ ∙ ∂t/∂n ∙ no = -λ∙ grad t, (9.9)

где: q – вектор плотности теплового потока;
λ – κоэффициент теплопроводности, [Вт/(м∙К)].
Численное значение вектора плотности теплового потока равна:

q = -λ∙ ∂t/∂n = -λ∙| gradt |, (9.10)

где:|gradt|- модуль вектора градиента температуры.
Коэффициент теплопроводности является физическим параметром вещества, характеризующим способность тела проводит теплоту, Она зависит от рода вещества, давления и температуры. Также на её величину влияет влажность вещества. Для большинства веществ коэффициент теплопроводности определяются опытным путем и для технических расчетов берут из справочной литературы.
Дифференциальное уравнение теплопроводности для трехмерного нестационарного температурного поля имеет следующий вид:

, (9.11)

где: а = λ/(с·ρ)коэффициент температуропроводности2/с], характеризует скорость изменения температуры.
Для стационарной задачи, дифференциальное уравнение имеет вид:

. (9.12)

<== предыдущая лекция | следующая лекция ==>
Тема 8. Основные понятия и определения | Стационарная теплопроводность через плоскую стенку.
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 336; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.