Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Влияние увеличения размера выборки на точность оценок

Противоречия между несмещенностью и минимальной дисперсией

В данном обзоре мы уже выяснили, что для оценки желательны несмещенность и наименьшая возможная дисперсия. Эти критерии совершенно различны, и иногда они могут противоречить друг другу. Может случиться так, что имеются две оценки теоретической характеристики, одна из которых является несмещенной (на рис. A.8), другая же смещена, но имеет меньшую дисперсию ().

 

Рис. A.8.

Оценка хороша своей несмещенностью, но преимуществом оценки является то, что ее значения практически всегда близки к истинному значению. Какую из них вы бы выбрали?

Данный выбор зависит от обстоятельств. Если возможные ошибки вас не очень тревожат при условии, что за длительный период они «погасят» друг друга, то, по-видимому, вы выберете. С другой стороны, если для вас приемлемы малые ошибки, но неприемлемы большие, то вам следует выбрать.

Формально говоря, выбор определяется функцией потерь, стоимостью сделанной ошибки как функцией ее размера. Обычно выбирают оценку, дающую наименьшее ожидание потерь, и делается это путем взвешивания функции потерь по функции плотности вероятности. (Если вы не любите риск, то можете также пожелать учесть дисперсию потерь.)

Будем по-прежнему предполагать, что мы исследуем случайную переменную с неизвестным математическим ожиданием и теоретической дисперсией и что для оценивания используется. Каким образом точность оценки зависит от числа наблюдений?

Ответ неудивителен: при увеличении оценка, вообще говоря, становится более точной. В единичном эксперименте большая по размеру выборка необязательно даст более точную оценку, чем меньшая выборка, – всегда может присутствовать элемент везения, – но общая тенденция должна быть именно такой. Поскольку дисперсия выражается формулой (доказательство этого факта мы опускаем), она тем меньше, чем больше размер выборки, и, значит, тем сильнее «сжата» функция плотности вероятности для.

Это показано на рис. A.9. Мы предполагаем, что нормально распределена со средним 25 и стандартным отклонением 50. Если размер выборки равен 25, то стандартное отклонение величины, равное, составит:. Если размер выборки равен 100, то это стандартное отклонение равно 5. На рис. А.9 показаны соответствующие функции плотности вероятности. Вторая () выше первой в окрестности, что говорит о более высокой вероятности получения с ее помощью аккуратной оценки. За пределами этой окрестности вторая функция всюду ниже первой.

 

Рис. A.9.

Чем больше размер выборки, тем уже и выше будет график функции плотности вероятности для. Если становится действительно большим, то график функции плотности вероятности будет неотличим от вертикальной прямой, соответствующей. Для такой выборки случайная составляющая становится действительно очень малой, и поэтому обязательно будет очень близкой к. Это вытекает из того факта, что стандартное отклонение, равное, становится очень малым при больших.

В пределе, при стремлении к бесконечности, стремится к нулю и стремится в точности к.

<== предыдущая лекция | следующая лекция ==>
Эффективность. Несмещенность – желательное свойство оценок, но это не единственное такое свойство | Состоятельность. Вообще говоря, если предел оценки по вероятности равен истинному значению характеристики генеральной совокупности
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 724; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.