КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Упругое и неупругое взаимодействия
При взаимодействии тел друг с другом изменяются их энергия и импульс. Это изменение, однако, может происходить по-разному. Когда речь идет о взаимодействии массивных тел, которые состоят из большого числа частиц, атомов или молекул, имеет смысл наряду с кинетической и потенциальной энергией говорить о внутренней энергии тела. Внутренняя энергия — это энергия всех частиц, составляющих тело, при заданных его температуре и объеме. В результате взаимодействия тела с другими телами может измениться его температура, а также (необратимым образом) его объем. Ясно, что эти изменения связаны с расходом энергии, т. е. в результате взаимодействия тела с внешними объектами меняется его внутренняя энергия. Такое взаимодействие является неупругим. Оно, очевидно, не сохраняет полной механической энергии тела —суммы кинетической и потенциальной. Напротив, если в результате взаимодействия внутреннее состояние тела не меняется, взаимодействие является упругим. В процессе упругого взаимодействия выполняется закон сохранения механической энергии. Рассмотрим в связи с этими соображениями столкновения двух тел. Столкновение тел заключается в их кратковременном взаимодействии, происходящем при соприкосновении тел. Поскольку вне этого момента времени тела не взаимодействуют, их потенциальная энергия относительно друг друга равна нулю. Взаимодействие при столкновении состоит, таким образом, в передаче от одного тела другому импульса и кинетической энергии. Рассмотрим удар двух шаров, центры которых движутся вдоль одной прямой, т. е. центральный удар. Пусть массы шаров m1 и m2, скорости до удара v1, и v2, после удара u1 и u2. Для определенности возьмем случай движения шаров, изображенный на рис.. Центральный удар шаров Сначала рассмотрим упругий удар шаров. В применении к данной задаче закон сохранения импульса системы шаров имеет вид: m1v1 + m2v2 = m1u1 + m2u2, 1.50) т.е. импульс системы до столкновения равен импульсу системы после столкновения. Закон сохранения энергии дает . (1.51) Перенося члены, относящиеся к первому шару влево, а ко второму шару вправо, и разделив одно из полученных уравнений на другое, находим: , . Решая полученную систему уравнений совместно, получаем: , (1.52) . (1.53) Исследуем полученный результат в частных случаях. 1. Соударение одинаковых шаров. Тогда m1 = m2 и u 1 = v 2, u 2 = v 1. (1.54) т. е. при упругом центральном ударе двух тел одинаковой массы они просто обмениваются скоростями. Если, в частности, до удара второй шар покоился (v2 = 0), то после удара остановится первый шар (u1 = 0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался до удара первый шар (u2 = v1,). 2. Удар шара о массивную стенку. В этом случае m2 >> m1 и приближенно будем иметь: (1.55) . Как видно отсюда, скорость массивного тела после удара меняется незначительно. В результате удара стенке передается значительный импульс, но передача энергии при ударе сравнительно мала: . Если стенка была первоначально неподвижна (v2 = 0), то упруго ударившийся о нее шарик малой массы отскочит обратно практически с теми же скоростью (u1 = ‑ v1) и энергией. При ударе о движущуюся стенку происходит обмен энергией между стенкой и шариком тем больший, чем больше скорость стенки. В зависимости от направления движения стенки (v2 больше или меньше 0) шарик отскакивает от стенки с большими или меньшими, чем до столкновения, кинетической энергией и импульсом. Рассмотрим теперь абсолютно неупругий удар шаров. При таком ударе энергия налетающего шара полностью расходуется на изменение внутренней энергии другого шара и на сообщение ему некоторой скорости. Закон сохранения механической энергии не выполняется, и для определения скорости после удара достаточно закона сохранения импульса. m1v1 + m2v2 =(m1 + m2) u1, (1.56) откуда . (1.57) Потеря механической энергии, перешедшей во внутреннюю энергию шаров, равна разности энергий до и после удара: . (1.58) Подставляя сюда (1.57), находим . (1.59) Если ударяемое тело было первоначально неподвижно (v2 = 0), то (1.60) 1.61) Когда неподвижное тело имеет большую массу (m2 > m1), то почти вся кинетическая энергия переходит при ударе во внутреннюю анергию. Напротив, при m1 >> m2 изменение внутренней энергии мало и большая часть кинетической энергии идет на сообщение движения ударяемому телу.
Дата добавления: 2014-01-03; Просмотров: 1849; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |