Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Затухающие колебания

Во всякой реальной колебательной системе имеются силы сопротивления, действие которых приводит к уменьшению энергии системы. Если убыль энергии не восполняется за счет работы внешних сил, колебания будут затухать. В простейшем, и вместе с тем наиболее часто встречающемся, случае сила сопротивления F * пропорциональна величине скорости:

. (3.18)

Здесь r — постоянная, называемая коэффициентом сопротивления. Знак минус обусловлен тем, что сила F * и скорость v имеют противоположные направления; следовательно, их проекции на ось x имеют разные знаки.

Уравнение второго закона Ньютона при наличии сил сопротивления имеет вид

. (3.19)

Применив обозначения

(3.20)

ω0 ‑ представляет собой ту частоту, с которой совершались бы свободные колебания системы в отсутствие сопротивления среды (при r = 0). Эту частоту называют собственной частотой системы.

перепишем уравнение (3.19) следующим образом:

. (3.21)

Подстановка в (3.21) функции x = e λ t приводит к характеристическому уравнению

(3.22)

Корни этого уравнения равны

, . (3.23)

При не слишком большом затухании (при β<ω0) подкоренное выражение будет отрицательным. Представим его в виде (iω)2, где ω — вещественная величина, равная

. (3.24)

Тогда корни характеристического уравнения запишутся следующим образом:

, . (3.25)

Общим решением уравнения (58.1) будет функция

.

Таким образом, при не слишком сильном затухании общее решение уравнения (3.21) имеет вид

. (3.26)

Здесь a0 и α — произвольные постоянные, ω — величина, определяемая формулой (3.24). На рис. дан график функции (3.26). Пунктирными линиями показаны пределы, в которых находится смещение колеблющейся точки x.

В соответствии с видом функции (3.26) движение системы можно рассматривать как гармоническое колебание частоты ω с амплитудой, изменяющейся по закону a (t) = a 0 e β∙ t . Верхняя из пунктирных кривых на рис. дает график функции a (t), причем величина a 0 представляет собой амплитуду в начальный момент времени. Начальное смещение x 0 зависит, кроме a 0, также от начальной фазы α: x 0 = a 0∙cosα.

Скорость затухания колебаний определяется величиной β = r /2 m, которую называют коэффициентом затухания. Найдем время τ, за которое амплитуда уменьшается в e раз. По определению e β∙τ = e ‑1, откуда β∙τ = 1. Следовательно, коэффициент затухания обратен по величине тому промежутку времени, за который амплитуда уменьшается в e раз.

Согласно формуле (3.24) период затухающих колебаний равен

. (3.27)

При незначительном сопротивлении среды () период колебаний практически равен T 0 = 2π/ω0. С ростом коэффициента затухания период колебаний увеличивается.

Последующие наибольшие отклонения в какую-либо сторону (например, a ', a '', a ''' и т.д. на рис. образуют геометрическую прогрессию. Действительно, если a ' = a 0 e β∙ t , то a '' = a 0 e β(t + T) = a ' e β T , a ''' = a 0 e β(t +2 T) = a '' e β T и т. д. Вообще, отношение значений амплитуд, соответствующих моментам времени, отличающимся на период, равно

.

Это отношение называют декрементом затухания, а его логарифм — логарифмическим декрементом затухания:

(3.28)

(не путать с λ в формулах (3.23) и (3.25)!).

Для характеристики колебательной системы обычно используется логарифмический декремент затухания λ. Выразив в соответствии с (3.28) β через λ, и T, можно закон убывания амплитуды со временем записать в виде

.

За время τ, за которое амплитуда уменьшается в е раз, система успевает совершить Ne = τ/ T колебаний. Из условия получается, что . Следовательно, логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в e раз.

Для характеристики колебательной системы часто употребляется также величина

, (3.29)

называемая добротностью колебательной системы. Как видно из ее определения, добротность пропорциональна числу колебаний Ne, совершаемых системой за то время τ, за которое амплитуда колебаний уменьшается в e раз.

Подстановка функции (58.7) и ее производной в выражение для полной энергии колеблющейся системы E = kx 2/2 + mv 2/2 приводит после преобразований к формуле

, (3.30)

где y = arctg (β/ω). График этой функции изображен на рис. Убывание энергии обусловлено работой силы сопротивления среды . Мощность, развиваемая этой силой, равна . Таким образом,

.

Отсюда вытекает, что в тех точках кривой E (t), где , касательная к кривой параллельна оси t. В остальных точках dE / dt < 0.

При малом затухании (β<<ω0) слагаемым, содержащим синус, в формуле (3.30) можно пренебречь и считать, что энергия изменяется по закону

E = E 0 e ‑2β t , (3.31)

где E 0 = k (a 0)2/2 — значение энергии в начальный момент. К тому же результату можно прийти, если заменить определяемое формулой (3.30) мгновенное значение E (t) его средним значением за времяот tT /2 до t + T /2 (T — период колебаний), вычисленным в предположении, что множитель ехр (—2β t) в течение промежутка T остается постоянным.

Из формулы (3.27) следует, что с ростом коэффициента затухания период колебаний увеличивается. При β=ω0 период колебаний обращается в бесконечность, т. е. движение перестает быть периодическим.

При β>ω0 корни характеристического уравнения становятся вещественными (см. (3.25)) и решение дифференциального уравнения (3.21) оказывается равным сумме двух экспонент:

.

Здесь C 1 и C 2 — вещественные постоянные, значения которых зависят от начальных условий (от x 0 и v 0).Следовательно, движение носит апериодический (непериодический) характер— выведенная из положения равновесия система возвращается в положение равновесия, не совершая колебаний.

На рис.показано оба возможных способа возвращения системы к положению равновесия при апериодическом движении. Каким из этих способов приходит система в положение равновесия, зависит от начальных условий. Движение, изображаемое кривой 2, получается в том случае, когда система начинает двигаться из положения, характеризуемого смещением x 0, к положению равновесия с начальной скоростью v 0 определяемой условием

. (3.32)

Это условие будет выполнено в том случае, если выведенной из положения равновесия системе сообщить достаточно сильный толчок к положению равновесия. Если, отведя систему из положения равновесия, отпустить ее без толчка (т. е. с v 0=0) или сообщить ей толчок недостаточной силы (такой, что v 0 окажется меньше определяемой условием (3.32)), движение будет происходить в соответствии с кривой 1 на рис.

<== предыдущая лекция | следующая лекция ==>
Сложение колебаний | Связанные гармонические осцилляторы. Упругие волны
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 435; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.