Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Бесконечно малые и бесконечно большие последовательности (величины)

Читайте также:
  1. Escape-последовательности
  2. Аксиома 3. Пунктуация последовательности событий
  3. Бесконечно большая величина (б.б.)
  4. Бесконечно большие функции и их связь с бесконечно малыми
  5. Бесконечно малые величины (б.м.)
  6. Бесконечно малые функции
  7. Бесконечно малые, бесконечно большие и локально ограниченные функции
  8. Большие циклы конъюнктуры Н. Д. Кондратьева
  9. Вопрос 4. Малые предприятия и их роль в экономике
  10. Временные ограничения на диаграммах последовательности
  11. Заключительные рекомендации по построению диаграмм последовательности

▼Последовательность называется бесконечно малой величиной, если для любого сколь угодно малого положительного числа можно подобрать такой номер N, что, начиная с этого номера (т.е. для всех ), будет выполнено неравенство

. (8) ▲

Нельзя смешивать бесконечно малую величину с малым числом. Любое малое число неизменно и для него всегда можно указать другое положительное число , такое, что |c| будет не менее .

aЛюбое малое число с, неравное нулю, не является бесконечно малой величиной.

Свойства бесконечно малых последовательностей

1. Сумма конечного числа бесконечно малых есть также величина бесконечно малая.

2. Произведение бесконечно малой на постоянную есть бесконечно малая последовательность (т.к. всякое постоянное можно рассматривать как ограниченную величину).

3. Произведение нескольких бесконечно малых является бесконечно малой.

Термин «бесконечно большая величина», как и термин «бесконечно малая величина», определяет не размер величины, а характер изменения её числового значения.

▼ Последовательность {βn} называется бесконечно большой, если для любого сколь угодно большого числа М найдётся такой номер N, что для всех n, начиная с этого номера, выполняется неравенство

|βn|>M. (9) ▲

За геометрический образ бесконечно большой величины можно принять точку М, абсцисса которой равна х, перемещающуюся по оси Ох в одном направлении (вправо или влево) или удаляющуюся от начала О на всё большее и большее расстояние попеременно то вправо, то влево.

<== предыдущая лекция | следующая лекция ==>
| Бесконечно малые и бесконечно большие последовательности (величины)

Дата добавления: 2014-01-03; Просмотров: 204; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:



studopedia.su - Студопедия (2013 - 2018) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление ip: 54.162.118.107
Генерация страницы за: 0.001 сек.