Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические интерфейсы


3.4.1. Интерфейс RS-485

Интерфейс RS-485 или EIA/TIA-485, один из наиболее распространенных стандартов физического уровня связи. Физический уровень – это первый уровень модели взаимосвязи открытых систем. Характеристики интерфейса приведены в табл.3.6.

 

Таблица 3.6. Стандартные параметры интерфейса RS-485

Допустимое число передатчиков / приемников 32 / 32
Максимальная длина кабеля 1200 м
Максимальная скорость связи 10 Мбит/с
Диапазон напряжений "1" передатчика +1,5...+6 В
Диапазон напряжений "0" передатчика –1,5...–6 В
Диапазон синфазного напряжения передатчика –1...+3 В
Допустимый диапазон напряжений приемника –7...+12 В
Пороговый диапазон чувствительности приемника ±200 мВ
Максимальный ток короткого замыкания драйвера 250 мА
Допустимое сопротивление нагрузки передатчика 54 Ом
Входное сопротивление приемника 12 кОм
Максимальное время нарастания сигнала передатчика 30% бита

 

Если необходимо организовать связь на расстоянии большем 1200 м или подключить больше устройств, чем допускает нагрузочная способность передатчика, применяют специальные повторители (репитеры).

Сеть, построенная на интерфейсе RS-485, представляет собой приемопередатчики, соединенные при помощи витой пары. В основе интерфейса RS-485 лежит принцип дифференциальной или балансной передачи данных. Суть его заключается в передаче одного сигнала по двум проводам. Причем по одному проводу (условно A) идет оригинальный сигнал, а по другому (условно B) – его инверсная копия. Другими словами, если на одном проводе «1», то на другом «0» и наоборот. Таким образом, между двумя проводами витой пары всегда есть разность потенциалов: при «1» она положительна, при «0» – отрицательна (рис. 3.17).

 

 

Рис. 3.17. Электрический сигнал интерфейса RS-485

 

Именно этой разностью потенциалов и передается сигнал. Такой способ передачи обеспечивает высокую устойчивость к синфазной помехе. Синфазной называют помеху, действующую на оба провода линии одинаково. К примеру, электромагнитная волна, проходя через участок линии связи, наводит в обоих проводах потенциал. Если сигнал передается потенциалом в одном проводе относительно общего, как в RS-232, то наводка на этот провод может исказить сигнал относительно хорошо поглощающего наводки общего («земли»). Кроме того, на сопротивлении длинного общего провода будет падать разность потенциалов земель - дополнительный источник искажений. А при дифференциальной передаче искажения не происходит. В самом деле, если два провода пролегают близко друг к другу, да еще перевиты, то наводка на оба провода одинакова. Потенциал в обоих одинаково нагруженных проводах изменяется одинаково, при этом информативная разность потенциалов остается без изменений.



Аппаратная реализация выходного устройства интерфейса – микросхемы приемопередатчиков с дифференциальными входами и выходами к линии связи и цифровыми портами к портам UART контроллера.

RS-485 – полудуплексный интерфейс. Прием и передача идут по одной паре проводов с разделением по времени (рис. 3.18). В сети может быть много передатчиков, так как они могут отключаться в режиме приема.

 

 

Рис. 3.18. Приемопередатчик RS-485

 

Обозначения на рис. 3.18: D (driver) – передатчик; R (receiver) – приемник; DI (driver input) – цифровой вход передатчика; RO (receiver output) – цифровой выход приемника; DE (driver enable) – разрешение работы передатчика; RE (receiver enable) – разрешение работы приемника; A – прямой дифференциальный вход/выход; B – инверсный дифференциальный вход/выход.

Цифровой выход приемника (RO) подключается к порту приемника UART (Rx). Цифровой вход передатчика (DI) к порту передатчика UART (Tx). Поскольку на дифференциальной стороне приемник и передатчик соединены, то во время приема нужно отключать передатчик, а во время передачи - приемник. Для этого служат управляющие входы – разрешение приемника (RE) и разрешения передатчика (DE). Так как вход RE инверсный, то его можно соединить с DE и переключать приемник и передатчик одним сигналом с любого порта контроллера. При уровне «0» – работа на прием, при «1» – на передачу (рис. 3.18).

Приемник, получая на дифференциальных входах (AB) разность потенциалов (UAB) переводит их в цифровой сигнал на выходе RO. Обычно порог чувствительности приемника составляет ± 200 мВ. То есть, когда UAB > +200 мВ – приемник определяет «1», когда UAB < –200 мВ – приемник определяет «0». Если разность потенциалов в линии настолько мала, что не выходит за пороговые значения - правильное распознавание сигнала не гарантируется. Кроме того, в линии могут быть и не синфазные помехи, которые исказят столь слабый сигнал.

Все устройства подключаются к одной витой паре одинаково: прямые выходы (A) к одному проводу, инверсные (B) – к другому.

Пример подключения приемопередатчика RS-485 к микроконтроллеру показан на рис. 3.19.

 

 

Рис. 3.19. Подключение приемопередатчика к микроконтроллеру

 

Входное сопротивление приемника со стороны линии (RAB) обычно составляет 12 кОм. Так как мощность передатчика имеет определенное значение, это создает ограничение на количество приемников, подключенных к линии. Согласно спецификации RS-485 с учетом согласующих резисторов передатчик может вести до 32 приемников. Однако есть ряд микросхем с повышенным входным сопротивлением, что позволяет подключить к линии значительно больше 32 устройств.

При больших расстояниях между устройствами, связанными по витой паре и высоких скоростях передачи начинают проявляться так называемые эффекты длинных линий. Причина этому - конечность скорости распространения электромагнитных волн в проводниках. Скорость эта существенно меньше скорости света в вакууме и составляет немногим больше 200 мм/нс. Электрический сигнал имеет также свойство отражаться от открытых концов линии передачи и ее ответвлений. Грубая аналогия – желоб, наполненный водой. Волна, созданная в одном конце, идет по желобу и, отразившись от стенки в конце, идет обратно, отражается опять и так далее, пока не затухнет. Для коротких линий и малых скоростей передачи этот процесс происходит так быстро, что остается незамеченным. Однако, время реакции приемников – десятки или сотни наносекунд. В таком масштабе времени несколько десятков метров электрический сигнал проходит отнюдь не мгновенно. И если расстояние достаточно большое, фронт сигнала, отразившийся в конце линии и вернувшийся обратно, может исказить текущий или следующий сигнал. В таких случаях нужно каким-то образом подавлять эффект отражения.

У любой линии связи есть такой параметр, как волновое сопротивление Zв. Оно зависит от характеристик используемого кабеля, но не от длины. Для обычно применяемых в линиях связи витых пар Zв = 120 Ом. Оказывается, что если на удаленном конце линии, между проводниками витой пары включить резистор с номиналом равным волновому сопротивлению линии, то электромагнитная волна, дошедшая до «тупика» поглощается на таком резисторе. Отсюда его названия - согласующий резистор или «терминатор».

Большой минус согласования на резисторах - повышенное потребление тока от передатчика, ведь в линию включается низкоомная нагрузка. Поэтому рекомендуется включать передатчик только на время отправки посылки. Есть способы уменьшить потребление тока, включая последовательно с согласующим резистором конденсатор для развязки по постоянному току. Однако, такой способ имеет свои недостатки. Для коротких линий (несколько десятков метров) и низких скоростей (меньше 38400 бод) согласование можно вообще не делать.

Эффект отражения и необходимость правильного согласования накладывают ограничения на конфигурацию линии связи.

Линия связи должна представлять собой один кабель витой пары. К этому кабелю присоединяются все приемники и передатчики. Расстояние от линии до микросхем интерфейса RS-485 должно быть как можно короче, так как длинные ответвления вносят рассогласование и вызывают отражения.

В оба наиболее удаленных конца кабеля (Zв = 120 Ом) включают согласующие резисторы Rt по 120 Ом (0,25 Вт). Если в системе только один передатчик и он находится в конце линии, то достаточно одного согласующего резистора на противоположном конце линии. Пример линии связи интерфейса RS-485 приведен на рис. 3.20.

 

 

Рис. 3.20. Линия связи интерфейса RS-485

3.4.1.1. Автоматический преобразователь интерфейсов USB/RS-485 ОВЕН АС4

Устройство предназначено для взаимного преобразования сигналов интерфейсов USB и RS-485. Позволяет подключать к промышленной сети RS-485 персональный компьютер, имеющий USB-порт

Обеспечивает автоматическое определение направления передачи данных, гальваническую изоляцию входов и создание виртуального COM-порта при подключении прибора к ПК, что позволяет без дополнительной адаптации использовать информационные системы (SCADA, конфигураторы), работающие с аппаратным COM-портом. Питание преобразователя осуществляется от шины USB. Схема подключения преобразователя АС4 к сетевым приборам показана на рис. 3.21.

 

 

Рис. 3.21. Схема подключения преобразователя АС4

 

При построении сети с использованием интерфейса связи RS-485 к линии, выполненной витой парой, может быть подключено до 32 приборов, а при использовании усилителя сигнала – до 256 приборов. В качестве усилителя можно использовать повторитель сигналов интерфейса RS-485 АС5.

Преобразователь АС4 имеет встроенные согласующие резисторы сопротивлением 100 и 120 Ом.

Подключение АС4 к ПК производится с помощью стандартного USB-кабеля.

Технические характеристики преобразователя АС4 приведены в табл. 3.7.

 

Таблица 3.7. Технические характеристики преобразователя АС4

Питание
Постоянное напряжение (на шине USB) 4,75…5,25 В
Потребляемая мощность не более 0,5 ВА
Допустимое напряжение гальванической изоляции входов не менее 1500 В
Интерфейс USB
Стандарт интерфейса USB 2.0
Длина линии связи с внешним устройством не более 3 м
Скорость обмена данными до 115200 бит/с
Используемые линии передачи данных А (D+), В (D–)
Интерфейс RS-485
Стандарт интерфейса TIA/EIA-485
Длина линии связи с внешним устройством не более 1200 м
Количество приборов в сети: – без использования усилителя сигнала – с использованием усилителя сигнала   не более 32 не более 256
Используемые линии передачи данных А (D+), В (D–)

 

3.4.2. Интерфейс «Токовая петля»

Интерфейс предназначен для передачи информации между устройствами с радиальной последовательной связью (ИРПС) и обеспечивает единые способы обмена информацией для различных устройств.

Подключение устройств осуществляется радиально посредством кабеля. Допускается использование в качестве соединительных линий выделенных пар в многожильных телефонных кабелях.

Интерфейс обеспечивает асинхронную передачу постоянным током (токовая петля) по 4-проводной дуплексной связи. В технически обоснованных случаях допустима и цепь взаимосвязи, указывающая состояние устройств. Взаимосвязью называется соединение для передачи последовательных двоичных сигналов с регулярной скоростью, определяемой стандартом или соглашениями.

Цепи взаимосвязи приведены в табл. 3.8. Сигналы в цепи 1 возникают в источнике и проходят к приемнику.

 

Таблица 3.8. Цепи интерфейса ИРПС

Номер Наименование Обозначение Направление
Передаваемые данные ПД+/ПД– От И к П/ от П к И
Принимаемые данные ПрД+/ПрД– От П к И / от И к П
Готовность приемника (необязательная цепь) ГП+/ГП– От П к И / от И к П

Знаки «+», «–» указывают направление тока в петле

 

Цепи 1, 2 и интервале между передаваемыми знаками или словами находятся в состоянии 1. Состояние 1 или 0 должно удерживаться в течение целого интервала сигнала. В случае, если устройство предназначено только для приема, цепь 1 остается разомкнутой. Цепь 3 в состоянии 1/0 указывает готовность/неготовность приемника к приему новой информации.

Формат передаваемой информации (в битах) следующий: старт – 1; передаваемые данные – 5,7 или 8; четность – 1 или отсутствует; стоп – 1,5 или 2. Формат кадра при последовательном асинхронном протоколе связи приведен на рис. 3.22.

 

 

Рис. 3.22. Формат кадра

 

В активном/пассивном режиме цепи взаимосвязи реализованы так, чтобы они питались от передатчика/приемника. Уровни сигналов для двух вариантов ИРПС приведены в таблице 3.9.

 

Таблица 3.9. Уровни сигналов ИРПС

Тип петли ИРПС Состояние Ток, мА
40-миллиамперная токовая петля лог. 1 / 0 30÷50 / 5÷10
20-миллиамперная токовая петля лог. 1 / 0 15÷25 / 0÷3

 

Соединяемые оконечные устройства имеют гальваническое разделение, осуществляемое со стороны цепи взаимосвязи, которая не питается током. Номинальное значение изоляционного напряжения гальванического разделения – 500 В.

Максимальная длительность фронтов сигналов в конце линии, нагруженной на характеристическое сопротивление, не превышает 50 мкс. Цепи взаимосвязи обеспечивают передачу сигналов со скоростью 9600 бит/с на расстояние от 0 до 500 м. При передаче на большие расстояния пропорционально понижается скорость передачи.

Сигналы взаимосвязи должны приближаться к прямоугольной форме. Крутизна фронтов сигналов, измеряемых на выходных зажимах передатчика, нагруженного сопротивлением 100 Ом, не более 1 мкс.

Схема источника сигнального тока выполняется так, чтобы отключение нагрузки и короткое замыкание выходных зажимов или одного из них на землю не приводили к ее повреждению. Любое включение на приемной стороне выполняется так, чтобы при длительной нагрузке максимально допустимым током цепи взаимосвязи оно не приводило к повреждению приемника. Любая схема на приемной стороне рассчитана на исключение повреждения при замыкании проводников в цепи взаимосвязи.

Параметры приемника следующие: падение напряжения, измеряемое на входных зажимах приемника, в состоянии 1 в цепи взаимосвязи – не более 2,5 В; входная емкость – менее 10 нФ; приемник работает независимо от крутизны фронтов в диапазоне 0...50 мкс.

Цепи взаимосвязи выполняются витой парой. Типы применяемого разъема и кабеля не регламентируются, по своим параметрам они должны удовлетворять вышеприведенным требованиям.

Подключение оборудования по интерфейсу «Токовая петля», четырехпроводное включение, полный дуплекс показано на рис. 3.23.

 

 

Рис. 3.23. Подключение ИРПС

 

<== предыдущая лекция | следующая лекция ==>
Универсальный асинхронный приемопередатчик | Адаптер интерфейса ОВЕН АС 2

Дата добавления: 2014-01-03; Просмотров: 1397; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.007 сек.