Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Времяимпульсный цифровой вольтметр двойного интегрирования

В цифровых вольтметрах двойного интегрирования преобразование Ux в пропорциональный ему временной интервал Тх осуществляется путем интегрирования сначала измеряемого Ux, а затем опорного U оп напряжений. В первом такте в течение времени T и производится интегрирование входного напряжения Ux, в результате чего напряжение на выходе интегратора

,

где RC – постоянная времени интегратора; t – независимая переменная величина (время).

В конце интервала интегрирования напряжение на выходе интегратора

.

В течение второго такта интегрируется опорное напряжение U оп, имеющее противоположную по отношению к Ux полярность. Интегрирование опорного напряжения продолжается до тех пор, пока выходное напряжение интегратора снова не станет равным нулю. Поэтому в течение времени второго такта напряжение на выходе интегратора

,

в конце этого периода

,

откуда

. (4.9)

Преобразование временного интервала Tx в эквивалентное число импульсов Nx осуществляется так же, как и в описанном выше методе, – путем заполнения Tx импульсами генератора опорной частоты и подсчета Ux числа счетчиком,

,

где f оп – частота генератора опорной частоты.

Интервал интегрирования T и формируется обычно путем заполнения счетчика импульсами от генератора опорной частоты и определяется в этом случае формулой

,

где N – емкость счетчика, тогда

.

Из уравнения (4.9) видно, что временной интервал Tx, пропорциональный Ux, не зависит от постоянной времени интегратора RC, а зависит от значений U оп и T и, которые могут поддерживаться постоянными с высокой точностью. В этом основное преимущество метода двойного интегрирования перед методом с генератором линейно изменяющегося напряжения, описанным выше. Достоинством метода является также то, что значение Nx не зависит от начального напряжения интегратора и долговременной нестабильности T и и f оп.

Структурная схема вольтметра, основанного на методе двойного интегрирования, приведена на рис. 4.21, а временные диаграммы, поясняющие его работу, – на рис. 4.22.

После запуска устройства управления (момент t 1) на счетчик и запоминающее устройство подается сигнал, устанавливающий Ux в исходное (нулевое) состояние. В момент t 2 с устройства управления подается сигнал, который ключ Кл2 размыкает, а ключ Кл1 устанавливает в положение 1, когда на вход интегратора подается Ux, например + u 1. Ключ Кл1 находится в положении 1 в течение времени T и, при этом напряжение на выходе интегратора u инт возрастает до значения + u1 (первый такт работы прибора). Интервал интегрирования T и формируется следующим образом. В момент t 2 на один

 

Рис. 4.21. Структурная схема цифрового вольтметра с двойным интегрированием

 

из входов схемы «И» с устройства управления подается сигнал, по которому с выхода схемы «И» на вход счетчика подаются импульсы с генератора опорной частоты, подаваемые на второй вход схемы «И». Счет этих импульсов идет до полного заполнения счетчика. На рис. 4.21 счетчик имеет четыре декады, следовательно, счет идет до 104 импульсов. После того как в счетчике зафиксируется 9999 импульсов, следующий десятитысячный импульс возвращает его в исходное состояние и с последней декады на устройство управления подается сигнал переполнения, по которому ключ Кл1 устанавливается в положение 2.

 

Рис. 4.22. Временные диаграммы работы вольтметра с двойным интегрированием

 

В течение интервала T и состояние счетчика не переносится в запоминающее устройство и не индицируется на цифровом индикаторе.

Интервал интегрирования

 

формируется из импульсов генератора опорной частоты, и его постоянство определяется стабильностью f 0.

Когда ключ Кл1 переключится в положение 2 (момент t 3), на вход интегратора будет подаваться опорное напряжение u оп с полярностью, противоположной ux (определяется положением ключа Кл3). Начинается второй такт работы прибора, когда напряжение на выходе интегратора начинает уменьшаться от значения + u1 до нуля (момент t 4). Момент u инт = 0 определяет устройство сравнения, которое выдает импульс в устройство управления. Устройство управления снимает сигнал со схемы «И», и импульсы с генератора опорной частоты на счетчик не подаются. Число импульсов N x, подсчитанное счетчиком в интервале Tx = t 4t 3, пропорционально ux. Оно фиксируется в запоминающем устройстве и индицируется на цифровом индикаторе до прихода следующего импульса запуска.

На рис. 4.22 показано, как изменяются напряжение на интеграторе и временной интервал Tx для различных значений ux – положительного u 1 (толстая линия), отрицательного u 1 (пунктирная линия), положительного u 2, в 2 раза превышающего u 1 (тонкая линия). Наклон интегратора (угол a) при разряде постоянен, так как постоянны напряжение и постоянная времени интегратора, это и дает возможность получить время разряда интегратора Tx, пропорциональное ux.

На рис. 4.22 показан также процесс интегрирования ux = u 2 + u п. При равенстве периода помехи T п и T и напряжение помехи u п не оказывает влияние на значение u2 и, следовательно, на Tx 2.

Погрешность измерения данным методом определяется нестабильностью u оп, нестабильностью порога срабатывания устройства сравнения, определяющего равенство u инт= 0, влиянием остаточных параметров аналоговых ключей, коммутирующих ux и u оп, кратковременной нестабильностью f 0 и T и.

Практически все современные цифровые вольтметры (ЦВ) строятся на основе метода двойного интегрирования. ЦВ, реализованные на этом методе, имеют погрешность измерений 0,02…0,005 %, подавление помех нормального вида 40…60 дБ, общего вида 100…160 дБ. С целью наибольшего подавления помех нормального вида с частотой сети (50 и 400 Гц) интервал интегрирования T и выбирают кратным периоду этой сетевой помехи T п (T и = nT п, n = 1,2…). Для поддержания равенства T и = nT п в ЦВ применяют систему автоподстройки частоты, которая поддерживает указанное равенство с требуемой точностью.

Достоинства: подавление напряжения помехи, получение высокой точности при относительной простоте схемы, возможность полной реализации на ИМС.

<== предыдущая лекция | следующая лекция ==>
Цифровой вольтметр с ГЛИН | Метод вольтметра-амперметра
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.