Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закон больших чисел


Под законом больших чисел понимают устойчивость средних: при очень большом числе случайных явлений средний их результат практически перестает быть случайным и может быть предсказан с большой степенью определенности. Под законом больших чисел в теории вероятностей понимается ряд теорем, в каждой из которых устанавливается факт приближения средних характеристик большого числа испытаний к некоторым определенным постоянным.

Теорема 1 (неравенство Маркова). Пусть Х – случайная величина, для которой существует математическое ожидание. Если P(X<0)=0, то

P(X≥1) ≤ M(X)

Доказательство.

По условию P(X<0)=0, следовательно, случайная величина Х принимает лишь неотрицательные значения.

1) Пусть Х – дискретная случайная величина. Тогда

P(X≥1)=

2) Пусть Х – непрерывная случайная величина. Тогда

P(X≥1)=

Пример.

Оценить вероятность того, что при 3600 независимых бросаниях игрального кубика число появлений 6 очков будет не меньше 900.

p= , n=3600, M(X)=n∙p=3600∙ =600

P(X ≥900)=P(

Используем неравенство Маркова и свойство математического ожидания

P( ≤ M( )=

 

Теорема 2 (неравенство Чебышева). Для любой случайной величины Х, имеющей математическое ожидание М(Х) и дисперсию D(Х), и для любого положительного числа справедливо неравенство:

 

Доказательство.

Событие равносильно или

По теореме 1 получим:

Замечание. Перейдя к противоположному событию, неравенство Чебышева можно записать в виде: .

Пример.

Вероятность появления события А в каждом испытании равна 0,5. Оценить вероятность того, что число появлений события А будет заключено от 40 до 60 в 100 независимых испытаниях.

 

 

Теорема 3 (теорема Чебышева). Если случайные величины :

1) попарно независимы;

2) имеют математические ожидания ;

3) имеют дисперсии , ограниченные в совокупности (то есть для любого k от 1 до n выполняется );

то для любого положительного числа выполняется:

 

или
.



Доказательство.

Рассмотрим случайную величину .

;

Воспользуемся неравенством Чебышева:

(стремится к 0 при )

или

Замечание. Если выполнены условия теоремы Чебышева, то говорят, что при неограниченном увеличении числа n средняя арифметическая случайных величин сходится по вероятности к средней арифметической их математических ожиданий:

 

 

Теорема 4(теорема Хинчина). Если случайные величины :

1) попарно независимы;

2) одинаково распределены;

3) имеют математическое ожидание m; то

 

(без доказательства)

Смысл можно пояснить следующим примером. Пусть требуется измерить некоторую величину A. В результате неизбежных ошибок при измерении результат измерения будет случайной величиной. Пусть - результат k-го измерения. Тогда и - независимые случайные величины. Среднее арифметическое также есть случайная величина, однако с увеличением числа измерений эта величина стабилизируется, приближаясь к A. Этим оправдывается рекомендуемый в практической деятельности способ многократного измерения (семь раз отмерь – один раз отрежь).

 

Теорема 5 (теорема Бернулли). Частота события A в n независимых испытаниях сходится по вероятности к вероятности наступления события А в одном испытании:

 

(без доказательства)

Теорема Бернулли обосновывает статистическое определение вероятности.

Рассмотренные теоремы (закон больших чисел) устанавливают факт приближения средних большого числа случайных величин к определенным постоянным. Но этим не ограничиваются закономерности, возникающие в результате суммарного действия случайных величин. Оказывается, что при некоторых условиях совокупное действие случайных величин приводит к нормальному закону распределения.

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
<== предыдущая лекция | следующая лекция ==>
Основные типы распределений НСВ | Экономическое развитие России в XVII в. Основные события. Последствия Смуты

Дата добавления: 2014-01-03; Просмотров: 406; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.