Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие собственных функций

Разложение сигналов по гармоническим функциям

Процедура анализа спектральным методом прохождения произвольного сигнала x(t) через произвольную линейную систему с импульсным откликом h(t) включает:

· определение спектральной функции X(w) ↔ x(t) входного сигнала с помощью прямого преобразования Фурье;

· определение комплексной передаточной характеристики H(w) ↔ h(t) линейной системы;

· определение спектральной функции сигнала Y(w) = X(w) H(w) на выходе системы;

· определение выходного сигнала y(t) ↔ Y(w) с помощью обратного преобразования Фурье.

Таким образом, анализ переходного процесса, вызываемого в системе входным сигналом, сводится к анализу стационарных решений воздействия на систему простых гармонических составляющих, каждая из которых действует от t = -∞ до ∞.

Помимо задач, связанных с анализом в системах переходных процессов, спектральными методами решаются также задачи синтеза систем, обладающих требуемой передаточной характеристикой и позволяющей получить на выходе сигнал заданной формы при определённом входном воздействии на систему.

Удобство использования частотного представления сигналов заключается в том, что гармонические функции являются собственными функциями операций переноса, интегрирования, дифференцирования и других линейных операций, инвариантных по координатам. Они проходят через линейные системы без изменения формы и частоты гармоники, изменяется только начальная фаза и амплитуда колебаний.

Допустим, что сигнал является линейной комбинацией функций синуса и косинуса:

s(х) = А sin(х)+B cos(х).

Сдвинем сигнал по аргументу на величину h. При этом получаем:

s(х+h) = C sin(х)+D cos(х),

C = А cos(h) – B sin(h), D = A sin(h) + B cos(h),

где коэффициенты C и D, как и в исходном выражении коэффициенты А и В, не зависят от аргумента, при этом C2+D2 = А22. Таким образом, при произвольном переносе функции по аргументу (а равно и при интегрировании, дифференцировании и других линейных преобразованиях) любую линейную комбинацию синуса и косинуса можно представить линейной комбинацией этих же функций.

Экспоненциальная комплексная запись гармонических функций делает это свойство еще нагляднее. Для произвольной гармонической функции имеем:

cos(wt-j) = A cos(wt)+B sin(wt),

где A = cos(j), B = sin(j), j - начальный фазовый угол колебания при t = 0.

Переходя к комплексной записи данной функции с использованием тождеств Эйлера

cos(wt) = [ехр(jwt)+exp(-jwt)]/2, sin(wt) = [ехр(jwt)-exp(-jwt)]/2j,

получаем:

cos(wt-j) = C exp(jwt)+C*exp(-jwt),

где: C = 0,5 exp(-jj), C* = 0,5 exp(jj) – величина, комплексно сопряженная с С.

Применяя в качестве гармонической составляющей разложения сигнала функцию ехр(jwt), можно рассматривать вторую функцию ехр(-jwt), комплексно сопряженную с первой, как такую же составляющую, но с отрицательной частотой. Естественно, что отрицательная частота является математической абстракцией, но нужно помнить, что пара таких комплексно сопряженных составляющих в сумме всегда дает вещественную функцию, т.е. является отображением (образом) вещественной функции в новом математическом пространстве, базисом которого являются комплексные экспоненциальные функции.

Экспоненциальные функции также являются собственными функциями линейных операций. Для операции переноса по аргументу:

exp[jw(t+h)] = exp(jwh)·exp(jwt) = H(w) exp(jwt),

где Н(w) = exp(jwh) - собственное значение операции переноса, независимое от переменной.

Для операции дифференцирования:

d[exp(jwt)]/dt = jw exp(jwt), H(w) = jw.

Для операции интегрирования:

exp(jwt) dt = (1/jw) exp(jwt), H(w) = 1/jw.

В общей форме, для любых линейных операций преобразования:

Т[exp(jwt)] = H(w) exp(jwt),

где T[.] - произвольный линейный оператор, H(w) - собственное значение операции, независимое от аргумента.

У специалистов-практиков существует предубеждение против использования комплексных функций с их мнимыми частотами. Поэтому в дальнейшем будем использовать и вещественные функции, и их комплексные аналоги, по крайней мере, до тех пор, пока простота и удобство использования последних не станет очевидным.

<== предыдущая лекция | следующая лекция ==>
Введение. Спектральное представление сигналов | Ряды Фурье
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 397; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.