КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Химические источники электрической энергии (ХИЭЭ)
Химическая обработка для повышения коррозионной стойкости (пассивация поверхности металла) - то, что не использовалось в выше приведенных методах, часто в расплавах или при повышенных температурах. а) Оксидирование – создание металлических оксидных пленок. Например алюминий погружают в раствор Nа2СrО4 или проводят электролиз в хромовокислом растворе или в растворе щавелевой кислоты, где алюминий – анод. Органические красители могут придать пленке любой цвет (оксидированный алюминий). б) Воронение – получение цветных оксидных пленок на железе и его сплавах (оксиды железа II и III и их смесь); они могут быть окрашены в синий, коричневый и серый цвета. Получают сухим термическим способом, нагревая железный предмет в печи до температуры 300-450оС, или мокрым – обработкой поверхности в кипящем сильно щелочном растворе солей (NaNO2, NaNO3). в) Образование фосфатных пленок (см выше). г ) Образование защитных поверхностных слоев, причем обладающих значительной механической прочностью, при взаимодействии не с кислородом, а с другими неметаллами (иногда с металлами): - углеродом (цементация – науглероживание поверхности с последующей термоупрочняющей обработкой); - бором (осаждение и диффузия бора – бориды железа обладают большой твердостью абразивной износостойкостью); - кремнием (силицированные покрытия делают на частях насосов, вентелях, лентах транспортеров и др.); - азотом (азотоуглероживание - нитроцементация в газовых при 600оС (NH3+ H2+CO) или жидкостных средах (расплав в жидких средах цианидов и цианатов натрия NaCN+NaCNO при 750-900оС.); - алитирование – создание поверхностного слоя алюминия на никелевых и кобальтовых сплавах турбинных лопаток; - термохромирование - нанесение химическим способом тонких слоев карбидов хрома, обладающих повышенной твердостью; - диффузное цинкование – для защиты от коррозии низкоуглеродных сталей и чугуна; - газохимические покрытия CVD (Chemical Vapour Deposition) из легко испаряющихся галогенидов (фторидов, хлоридов, бромидов, иодидов) переходных металлов 4 и 5 групп ПС, а также карбонилов металлов и металлоорганических соединений при 500-15000С: Тil4 + 2H2 = Ti + 4HI Ni(CO)4 = Ni + 4CO.
ХИЭЭ – устройства для прямого превращения химической энергии окислительно-восстановительных реакций в электрическую. Существуют три типа источников тока: ГЭ, топливные элементы и аккумуляторы. ГЭ относятся к первичным элементам, т.е. устройствам, которые допускают лишь однократное использование активных материалов электродов. В процессе работы регенерация (обновление) реагентов и самих электродов не происходит. Это источники энергии однократного использования (в быту мы их называем «батарейки»). Один из первых ГЭ – это элемент Даниеля –Якоби: Zn|ZnSO4||CuSO4|Сu. Анод (окисление): Zn → Zn2+ + 2e Kатод (восстан-е): Cu2+ + 2e → Cu При замыкании внешней цепи через систему пойдет электрический ток до тех пор, пока на электродах будут идти процессы обмена с передачей электронов, обусловленные различными электродными потенциалы цинка и меди. Электродный потенциал цинка меньше, чем меди, поэтому в процессах обмена цинк будет окисляться, отдавая два электрона, которые будут использоваться для восстановления катионов меди до металлического состояния. Электрод, на котором протекает процесс окисления называется анодом, а электрод-металл, на котором протекает процесс восстановления – катодом. В схеме электрической цепи металл-анод (более электроотрицательный) записывают слева, а металл-катод (более электроположительный) – справа. ЭДС этого элемента составляет DЕ = 0, 34 –(-0,76) = 1,1В.
Самый широко распространенный ГЭ – элемент Лекланше (DЕ = 1,25-1,5В). Используется для питания радиоприемников, часов, игрушек и пр. Он очень удобен в эксплуатации, т.к. его составные части твердые или пастообразные. Схема ГЭ: Zn|NH4Cl, ZnCl2|MnO2(C) Анодом является цинковый стаканчик (корпус батарейки) с герметичным уплотнением из полимерных материалов. Катодом – графитовый стержень, помещенный в смесь диоксида марганца с измельченным графитом. В качестве электролита(ионного проводника) используется пастообразная смесь хлоридов аммония и цинка. Процессы на электродах: Анод: Zn → Zn2+ + 2e Катод: MnO2 + NH4+ + e → MnOOH + NH3 или MnO2 + Н2О+ e → MnOOH + ОН- или метагидороксид марганца (III) Суммарный процесс: Zn + 2MnO2 +2Н2О+ e → Zn2+ + 2MnOOH + 2ОН-. Далее образуется гидроксид цинка: Zn2+ + ОН- = Zn(ОН)2. Хлорид аммония вводится для того, чтобы препятствовать процессу образования гидроксида цинка, затрудняющего анодный процесс, образуя растворимую комплексную соль. 2Zn(ОН)2 + 4NH4Cl = [Zn(NH3)4]Cl2 + 4Н2О + ZnCl2 Топливный элемент (ТЭ) – первичный (неперезаряжаемый) химический источник тока (ХИТ), в котором происходит непрерывное возмещение расходуемых реагентов и непрерывное удаление образующихся продуктов. Появление первых ТЭ – это реализация идеи прыямого превращения энергии сгорания горючих веществ в электрическую. Применение топливных элементовдля этой цели позволяет получить К.П.Д., близкий к 100%. В то время как сжигание топлива в современной теплоэлектростанции дает КПД 20%, максимум 40%. Есть типы ТЭ щелочные и кислотные, но суммарная ОВР у них одна: 2Н2 + О2 = 2Н2О. Электроды в ТЭ – индефферентные, т.е. не принимающие участие в электродных процессах. Их изготавливают из графита с добавками платины и металлов платиновой группы, также применяют электроды из серебра, никеля, спеченные оксидные электроды. Наиболее распространенным является щелочной ТЭ. Газообразные водород и кислород пропускают через пористые угольные электроды в концентрированном растворе щелочи: Анод: 2Н2 + 4ОН- → 4Н2О + 4e Катод: О2 + 2Н2О + 4e ® 4ОН- 2Н2(газ) + О2(газ) ® 2Н2О(жид) ЭДС ТЭ порядка 1,2В. В процессе работы ТЭ образуется вода, которую можно использовать в качестве питьевой, например, на космических кораблях, где ТЭ применяют системы из топливных элементов в качестве источника энергии. Пиковая мощность может достигать 12, а средняя 7кВт. В кислотных ТЭ протекают реакции: Анод: Н2 ® 2Н+ + 2e Катод: О2 + 4Н+ + 4e ® 2Н2О Есть топливные элементы. Где вместо водорода используют гидразин N2H2 + O2 = N2 + 2Н2О Элемент Лекланше - это гальванический элемент, который был изобретён в 1865 году французским инженером Жоржем Лекланше. Он является самым известным первичным элементом (батарея одноразового использования), который широко использовался в радио, звонках, фонарях. Также элемент Лекланше называют "сухим" или марганцево-цинковым элементом. Первоначально элемент Лекланше представлял собой стеклянную банку с раствором хлорида аммония, в который были погружены цинковый стержень (отрицательный электрод) и керамический пористый сосуд, наполненный смесью двуокиси марганца и порошка кокса и имеющий в середине угольный стержень-токоотвод (положительный электрод). В ходе дальнейшего усовершенствования элемента цинковый стержень был заменен цинковым стаканчиком, выполнявшим одновременно роль анода и корпуса элемента. Вместо керамического сосуда для удержания активной массы положительного электрода стали использовать тканевый или бумажный патрон. В более поздних конструкциях "сухих" элементах Лекланше электролит стали загущать крахмалистыми веществами. Отличительными чертами элементов типа Лекланше служат: сравнительная простота устройства, отсутствие в них кислот и выделения вредных газов, сравнительно большая их мощность. Недостатком их является резкое падение напряжения при разряде. Также существуют близкие аналоги элементов Лекланше - марганцево-цинковые элементы со щелочным электролитом и марганцево-магниевые элементы с солевым электролитом.
Марганцево-цинковый элемент. Марганцево-цинковый элемент, также известный как элемент Лекланше — это первичный химический источник тока, в котором анодом является двуокись марганца MnO2 (пиролюзит) в смеси с графитом (около 9,5 %), электролитом — раствор хлорида аммония NH4Cl, катодом — металлический цинк Zn. Является самым известным первичным элементом (батарея одноразового использования), который сегодня широко используется в переносных устройствах. Изначально элементы заполнялись жидким электролитом. В дальнейшем электролит стали загущать с помощью крахмалистых веществ — это позволяло сделать более практичные элементы питания, называемые сухими, в которых сведена к минимуму возможность вытекания электролита. [править] История изобретения Первый марганцево-цинковый элемент был собран Ж. Лекланше в 1865 г[1]. [править] Характеристики
[править] Принцип действия
Процессы, происходящие в сухом элементе При потреблении тока электроны поступают через внешнюю электрическую цепь с цинкового электрода на угольный стержень. Происходят следующие реакции: Анод: Zn → Zn 2+ + 2e− На угольном стержне электроны расходуются на восстановление H3O+-ионов: Катод: 2H3O+ + 2e− → H2 + 2H2O Ионы H3O+ образуются в результате частичного протолиза NH4+-ионов электролита: NH4+ + H2O ↔ H3O+ + NH3 При восстановлении H3O+-ионов образуется водород, который не может удалиться (корпус герметичен) и образует вокруг угольного стержня прослойку газа (поляризация угольного электрода). Ток медленно затухает. Чтобы избежать образования водорода, угольный электрод окружают слоем диоксида марганца (MnO2). В присутствии диоксида марганца H3O+-ионы восстанавливаются с образованием воды: 2MnO2 + 2H3O+ + 2e− → 2MnO(OH) + 2H2O Таким способом избегают поляризации электрода, а диоксид марганца называют деполяризатором. Электролит NH4Cl диссоциирует и частично протолизируется. В общем: 2NH4Cl + 2H2O ↔ 2NH3 + 2H3O+ + 2Cl− Образующиеся на катоде ионы Zn2+ поступают в раствор и образуют труднорастворимую соль: Zn2+ + 2NH3 + 2Cl− → [Zn(NH3)2]Cl2 В общем: Анод: Zn — 2e− → Zn2+ Катод: 2MnO2 + 2H3O+ + 2e− → 2MnO(OH) + 2H2O Раствор электролита: Zn2+ + 2NH4+ + 2Cl− + 2H2O ↔ [Zn(NH3)2]Cl2 + 2H3O+
[править] Устройство
Сухой элемент В качестве электродов в «сухом элементе» выступают цинковый стакан и угольный стержень. Поэтому сухой элемент называют еще угольно-цинковым элементом. Положительным электродом «+» является угольный стержень, отрицательным — цинковый стакан. Угольный стержень окружен смесью диоксида марганца MnO2 и угля (сажи). В качестве электролита выступает раствор хлорида аммония NH4Cl с небольшой добавкой хлорида цинка ZnCl2, загущенный крахмалом и мукой — это необходимо для того, чтобы электролит не мог вытечь или высохнуть при хранении и эксплуатации элемента. Тем не менее при неправильной эксплуатации или слишком длительном хранении электролит всё же может потечь или высохнуть. [править] Производство
[править] Хранение и эксплуатация
[править] Восстановление работоспособности По мере разрядки цинковый стакан покрывается слоем цинкдиамминхлорида, за счёт чего увеличивается внутреннее сопротивление элемента. Частично восстановить ёмкость элемента можно, если удалить слой цинкдиамминхлорида с поверхности цинкового стакана. Сделать это удаётся несколькими способами:
Второй способ нередко ошибочно называют перезарядкой. Стоит, однако, отметить, что оба способа сопряжены с риском повреждения цинкового стакана и подтекания электролита, а второй способ может также привести к взрыву элемента. Другой распространённой причиной потери ёмкости является высыхание электролита. Это обычно происходит в тех случаях, когда элемент используется в течение длительного времени в устройствах, потребляющих небольшой ток (например, электронных часах), либо после длительного хранения. В этом случае восстановление работоспособности возможно после шприцевания батарейки водой, однако после необходимо плотно закрыть отверстие, иначе электролит может в скором времени снова высохнуть, либо начать подтекать. Ещё одной известной неисправностью является коррозия (окисление) цинкового стакана. В результате окисления происходит истончение стакана, а также (при окислении контактных площадок) — увеличение сопротивления элемента. Коррозия в дальнейшем может также перекинуться на другие металлические детали, расположенные близко к батарее. Окислившийся элемент восстановлению не подлежит. [править] Области применения Все первичные источники тока, за исключением серебряно-цинкового, обладают большим внутренним сопротивлением - десятки Ом, не допускающим разряда их токами большой силы из-за чрезмерного падения напряжения на внутреннем сопротивлении. Это надо помнить при использовании их в качестве силовых источников тока.
Дата добавления: 2014-01-03; Просмотров: 941; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |