КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Комплексные числа
Введение. Комплексные числа имеют три формы записи. Алгебраическая форма представляет число в виде ; здесь a и b – действительные числа, i – число иного рода, называемое мнимой единицей. Основное свойство числа i состоит в том, что его квадрат равен минус единице: . Числа вида являются действительными. Числа вида называются мнимыми. Обозначим число буквой z. Число a называется действительной частью числа z, число b – мнимой частью числа z. Коротко это можно записать так: , , где Re и Im – принятые в математике обозначения действительной и мнимой части комплексного числа (по-английски Real – действительный, Imaginary – мнимый).
Число z можно понимать как упорядоченную пару действительных чисел . Поэтому его можно изобразить точкой на плоскости. Действительная часть откладывается по оси абсцисс, а мнимая часть – по оси ординат (рис. 7.1). Комплексное число чаще изображают не точкой, а вектором, начало которого совпадает с началом координат комплексной плоскости, а конец имеет декартовы координаты . Если такой вектор перенести параллельно самому себе, он также будет изображать то же самое число. Точку на плоскости можно рассматривать и в полярных координатах , где r – расстояние от точки до начала координат, a – угол между отрезком, соединяющим точку с началом координат, и осью абсцисс (рис. 7.1). Число r называется модулем числа z, число a называется аргументом (или фазой) числа z. Коротко это обозначается так: , . Из рис. 7.1 видно, что , , (7.1) поэтому комплексное число z можно представить в виде Такая форма представления комплексного числа называется тригонометрической. Отметим, что . (7.2) Формулы 7.1 определяют переход от тригонометрической формы комплексного числа к алгебраической, формулы 7.2 – от алгебраической к тригонометрической. При этом a лежит в пределах от –p до p и вычисляется с учетом знаков a и b: Для числа аргумент не определен. Формула Эйлера позволяет ввести показательную форму комплексного числа: . Модуль r и фаза a имеют тот же смысл, что и для тригонометрической формы комплексного числа. Формулу Эйлера можно понимать как определение экспоненты с мнимым показателем: – это такое комплексное число, действительная часть которого равна , а мнимая равна . Более корректно функция определяется как сумма ряда . Учитывая, что и сгруппировав отдельно действительные и мнимые слагаемые этого ряда, получим ряды для косинуса и синуса, что и доказывает формулу Эйлера (строго говоря, такая перегруппировка слагаемых нуждается в обосновании, но мы законность этого действия примем без доказательства): Для экспоненты с мнимым показателем, так же как и для экспоненты с действительным показателем, справедливо свойство: произведение двух экспонент равно экспоненте, показатель которой равен сумме показателей сомножителей: . Сложение комплексных чисел
Суммой комплексных чисел и называется комплексное число . То есть, действительная часть суммы – это сумма действительных частей слагаемых, а мнимая часть суммы – это сумма мнимых частей слагаемых. Например, если , то . На комплексной плоскости сложению комплексных чисел соответствует сложение векторов (рис. 7.2). Сложение чисел в показательной и тригонометрической форме неудобно. Чтобы сделать это, нужно сначала перевести оба числа в алгебраическую форму, сложить их, а затем перевести результат в нужную форму. Например, Умножение комплексных чисел Умножение комплексных чисел в алгебраической форме выполняется по тем же правилам, что и умножение действительных чисел. Единственное различие в том, что : . Например, . Умножение комплексных чисел в показательной форме выполняется еще проще. Пусть , тогда , то есть, при умножении комплексных чисел модуль произведения равен произведению модулей сомножителей, а аргумент произведения равен сумме аргументов сомножителей. Например, ; . С помощью формулы Эйлера из правила умножения комплексных чисел в показательной форме может быть получено правило умножения комплексных чисел в тригонометрической форме. Оно такое же, как для чисел в показательной форме. Замечание 1: Мнимая единица может записываться как перед действительным множителем, так и после него: и т.д. Эти выражения равны вследствие того что произведение любых двух комплексных чисел коммутативно, т.е не зависит от порядка сомножителей. Замечание 2: Аргументы комплексных чисел могут выражаться как в радианах (то есть просто в числах), так и в градусах. Запись аргументов комплексных чисел в радианах, как правило, применяется в математике и физике; запись в градусах – в технических науках и инженерных расчетах. Умножению комплексного числа z на число соответсвует растяжение вектора, изображающего число z, в раз и поворот его на угол . Это следует из описанных выше правил умножения. Деление комплексных чисел Проще всего делить числа в показательной и тригонометрической форме. При этом модуль частного равен отношению модулей делимого и делителя, аргумент частного равен разности аргументов делимого и делителя. Это правило прямо следует из правил умножения. Пусть , , тогда . Например, . Чтобы разделить комплексное число в алгебраической форме на действительное число, нужно разделить отдельно действительную и мнимую часть. Пусть , тогда . Например: .
Деление комплексного числа в алгебраической форме на комплексное число в алгебраической форме сводят к делению комплексного числа на действительное. Это делают путем умножения числителя и знаменателя на число, комплексно сопряженное знаменателю. Комплексно сопряженное число обозначается звездочкой или чертой наверху, например, . Комплексно сопряженные числа имеют одну и ту же действительную часть и противоположные мнимые части: . На комплексной плоскости комплексно сопряженные числа расположены симметрично относительно действительной оси (рис. 7.3). Произведение числа на его сопряженное равно квадрату его модуля, это всегда неотрицательное действительное число: . Итак, разделим два числа в алгебраической форме. Пусть , . Тогда . Например, .
Дата добавления: 2014-01-03; Просмотров: 1984; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |