Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Круговая система обозначений


Система вычетов

 

Система вычетов [a], или [a]n, — множество целых чисел, сравнимых по модулю n. Другими словами, это набор всех целых чисел, таких, что x = a (mod n). Например, если n = 5, мы имеем множество из пяти элементов [0], [1], [2], [3] и [4], таких как это показано ниже:

[0] = {…., –15, 10, –5, 0, 5, 10, 15, …}

[1] = {…., –14, –9, –4, 1, 6 , 11, 16,…}

[2] = {…., –13, –8, –3, 2, 7, 12, 17,…}

[3] = {...., –12, –7, –2, 3, 8, 13, 18,…}

[4] = {…., 11, –6, –1, 4, 9, 14, 19,…}

Целые числа в наборе [0] все дают остаток 0 при делении на 5 (сравнимы по модулю 5). Целые числа в наборе [1] все дают остаток 1 при делении на 5 (сравнимы по модулю 5), и так далее. В каждом наборе есть один элемент, называемый наименьшим (неотрицательным) вычетом. В наборе [0] это элемент 0; в наборе [1] — 1, и так далее. Набор, который показывает все наименьшие вычеты: Z5 = {0, 1, 2, 3, 4}. Другими словами, набор Zn — набор всех наименьших вычетов по модулю n.

 

Понятие "сравнение" может быть лучше раскрыто при использовании круга в качестве модели. Так же, как мы применяем линию, чтобы показать распределение целых чисел в Z, мы можем использовать круг, чтобы показать распределение целых чисел в Zn.

 

Рисунок позволяет сравнить два этих подхода. Целые числа от 0 до n–1 расположены равномерно вокруг круга. Все целые числа, сравнимые по модулю n, занимают одни и те же точки в круге. Положительные и отрицательные целые числа от Z отображаются в круге одним и тем же способом, соблюдая симметрию между ними.

<== предыдущая лекция | следующая лекция ==>
Сравнения | Операции в Zn

Дата добавления: 2014-01-03; Просмотров: 139; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.