КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Введение. Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – частотный (спектральный) анализ
Лекция 3. ФИЛЬТРЫ СГЛАЖИВАНИЯ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ. Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций, в отличие от численных методов анализа и математической статистики, где предпочтение отдается полиномам. В качестве периодических используются гармонические функции синусов и косинусов. По-существу, спектральный состав сигналов – это тонкая внутренняя структура данных, которые несет сигнал, и которая практически скрыта в динамическом представлении данных даже для опытных обработчиков. Точно так же частотная характеристика цифрового фильтра – это его однозначный функциональный паспорт, полностью определяющий сущность преобразования фильтром входных данных. Следует отметить, что хотя цель фильтрации сигналов состоит именно в направленном изменении частотного состава данных, которые несет сигнал, у начинающих специалистов существует определенное эмоциональное противодействие частотному подходу и его роли в анализе данных. Преодолеть это противодействие можно только одним путем – на опыте убедиться в эффективности частотного подхода. Рассмотрим пример частотного анализа фильтров при сглаживании данных методом наименьших квадратов (МНК).
Дата добавления: 2014-01-03; Просмотров: 408; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |