Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Билинейное z-преобразование

Принцип преобразования. При стандартном z-преобразовании передаточной функции используется замена переменной вида:

z = exp(-pDt), (9.4.1)

где Dt - шаг дискретизации данных, p – комплексная переменная, р = s+jw.

Уравнение (9.4.1) можно записать в виде ln z = -pDt и разложить ln z в ряд:

ln z = -2[(1-z)/(1+z)+(1-z)3/(3(1-z)3)+....], z > 0.

Первый член этого разложения и представляет собой билинейное z- преобразование:

p = (2/Dt)(1-z)/(1+z). (9.4.2)

По сути, оно представляет собой отображение точек комплексной p-плоскости в точки комплексной z-плоскости, и наоборот. В общем виде:

p = g(1-z)/(1+z), (9.4.3)

z = (g-p)/(g+p). (9.4.4)

Значение множителя g не меняет формы преобразования, в связи с чем обычно принимают g = 1. Подставим p = jw в (9.4.4) и выразим z в показательной форме:

z = r exp(jj(w)), r = |z| = 1.

j(w) = 2 arctg(w/g),­

В частности:

w = 0, z = exp(j0) = 1,

w =¥, z = exp(jp) = -1

Рис. 9.4.1.

При изменении w от - ¥ до ¥ фазовый угол j(w) монотонно изменяется от -p до p (см. рис. 9.4.1), т.е. мнимая ось p-плоскости (p = jw, -¥ < w < ¥) отображается в единичную окружность z-плоскости, правая половина s-плоскости – внутрь единичной окружности, а левая половина с полюсами устойчивых аналоговых фильтров – снаружи единичной окружности.

Деформация частотной шкалы. Реальное отображение передаточных функций фильтров является непрерывным (в силу своей физической сущности) и для упрощения дальнейших расчетов обычно задается в аналитической форме в комплексной р-плоскости по частотному аргументу ω от -¥ до +¥. При билинейном z-преобразовании происходит нелинейное искажение шкалы частот: полный частотный диапазон от - ¥ до ¥ непрерывных функций в р-плоскости сжимается до главного частотного диапазона от -p/Dt до p/Dt дискретных функций в z-плоскости. При задании уравнений непрерывных передаточных функций в частотной области это должно сопровождаться соответствующей обратной деформацией частотной шкалы, которая будет скомпенсирована при билинейном z-преобразовании. Подставляя в (9.4.2) z = exp(-jwDt) и умножая числитель и знаменатель правой части полученного уравнения на exp(jwDt/2), получим:

p = (2/Dt)[exp(jwDt/2)-exp(-jwDt/2)] / [exp(jwDt/2)+exp(-jwDt/2)],

p = (2/Dt) th(jwDt/2). (9.4.5)

Обозначим новую шкалу частот в р-области через индекс wд (деформированная) и, полагая p = jwд, с учетом тождества th(x) = - jtg(jx), получаем:

wд = (2/Dt) tg(wDt/2) = g tg(wDt/2), -p/Dt<w<p/Dt. (9.4.6)

Рис. 9.4.2. Деформация частоты.

Выражение (9.4.6) позволяет осуществлять переход от фактических частот w главного частотного диапазона, которым должен соответствовать оператор РЦФ, к деформированным частотам wд комплексной p-плоскости, на которой можно задавать требуемую форму передаточной функции проектируемого фильтра, при этом аппроксимация передаточных функций, учитывая область существования w от -¥ до ¥, может производиться многочленами и рациональными функциями. Связь частот приведена на рис. 9.4.2 (в начальной части p пространства деформированных частот).

<== предыдущая лекция | следующая лекция ==>
Режекторные и селекторные фильтры | Типы рекурсивных частотных фильтров
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 1041; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 4.545 сек.