КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Предельные теоремы
Теорема Пуассона
В случае, если вероятности появления события А в каждом опыте различны, то справедлива следующая теорема, известная как теорема Пуассона. Теорема. Если производится п независимых опытов и вероятность появления события А в каждом опыте равна рi, то при увеличении п частота события А сходится по вероятности к среднему арифметическому вероятностей рi.
Как уже говорилось, при достаточно большом количестве испытаний, поставленных в одинаковых условиях, характеристики случайных событий и случайных величин становятся почти неслучайными. Это позволяет использовать результаты наблюдений случайных событий для предсказания исхода того или иного опыта. Предельные теоремы теории вероятностей устанавливают соответствие между теоретическими и экспериментальными характеристиками случайных величин при большом количестве испытаний. В рассмотренном выше законе больших чисел нечего не говорилось о законе распределения случайных величин. Поставим задачу нахождения предельного закона распределения суммы когда число слагаемых п неограниченно возрастает. Эту задачу решает Центральная предельная теорема Ляпунова. В зависимости от условий распределения случайных величин Xi, образующих сумму, возможны различные формулировки центральной предельной теоремы. Допустим, что случайные величины Xi взаимно независимы и одинаково распределены. Теорема. Если случайные величины Xi взаимно независимы и имеют один и тот же закон распределения с математическим ожиданием т и дисперсией s2, причём существует третий абсолютный момент n3, то при неограниченном увеличении числа испытаний п закон распределения суммы неограниченно приближается к нормальному. При доказательстве этой теоремы Ляпуновым использовались так называемые характеристические функции. Определение. Характеристической функцией случайной величины Х называется функция эта функция представляет собой математическое ожидание некоторой комплексной случайной величины , являющейся функцией от случайной величины Х. При решении многих задач удобнее пользоваться характеристическими функциями, а не законами распределения. Зная закон распределения, можно найти характеристическую функцию по формуле (для непрерывных случайных величин): Как видим, данная формула представляет собой не что иное, как преобразование Фурье для функции плотности распределения. Очевидно, что с помощью обратного преобразования Фурье можно по характеристической функции найти закон распределения. Введение характеристических функций позволяет упростить операции с числовыми характеристиками случайных величин. В случае нормального распределения характеристическая функция имеет вид: Сформулируем некоторые свойства характеристических функций: 1) Если случайные величины Х и Y связаны соотношением где а – неслучайный множитель, то 2) Характеристическая функция суммы независимых случайных величин равна произведению характеристических функций слагаемых. Случайные величины Xi, рассмотренные в центральной предельной теореме, могут обладать произвольными распределениями вероятностей.
1.6. Теорема Муавра – Лапласа
Если все эти случайные величины одинаково распределены, дискретны и принимают только два возможных значения 0 или 1, то получается простейший случай центральной предельной теоремы, известный как теорема Муавра – Лапласа. Теорема. (Теорема Муавра – Лапласа) Если производится п независимых опытов, в каждом из которых событие А появляется с вероятностью р, то для любого интервала (a, b) справедливо соотношение:
где Y – число появлений события А в п опытах, q = 1 – p, Ф(х) – функция Лапласа, - нормированная функция Лапласа. Теорема Муавра – Лапласа описывает поведение биноминального распределения при больших значениях п. Данная теорема позволяет существенно упростить вычисление по формуле биноминального распределения. Расчёт вероятности попадания значения случайной величины в заданный интервал при больших значениях п крайне затруднителен. Гораздо проще воспользоваться формулой:
Теорема Муавра – Лапласа очень широко применяется при решении практических задач.
Заключение по лекции: В лекции мы рассмотрели закон больших чисел. В ходе подготовки к последующей лекции и практическим занятиям вы должны самостоятельно при углубленном изучении рекомендованной литературы и решения предложенных задач дополнить свои конспекты лекций.
Задание на самостоятельную работу Изучить: 1. Баврин И.И., Матросов В.Л. Высшая математика: Учебник для студентов высших учебных заведений. – М.: Гуманит. изд. центр ВЛАДОС, 2003 г. - 400 с. стр. 394-397.
Дата добавления: 2014-01-03; Просмотров: 353; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |