КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистические характеристики
Вариационный ряд чисел и его основные В результате выборки мы получим ряд значений варьирующего признака. Этот ряд называется вариационным рядом чисел. Каждое в отдельности наблюдение является представителем или элементом вариационного ряда. Чтобы выявить определённую закономерность при анализе вариационного ряда чисел часто подходят двумя путями: 1. Можно группировать эти данные (не сводить их в таблицу, не разбивать их на группы), но это неудобно! 2. Данные группируют. Разбивают на классы или группы. Последовательность группировки этих данных заключается: а) устанавливают количество групп или классов. Оно зависит от объёма выборки (n) n k 20 - 30 5 - 6 30 – 60 6 – 7 60 – 100 7 – 8 > 100 8 - 15 __ б) К = 2 Количество классов берётся от 5 до 20 в) Устанавливают интервал или классовый промежуток , где – размах варьирования (), разница между наибольшим () и наименьшим (значениями признака. г) Затем данные разносят по классам и рассчитывают характеристики вариационного ряда. 1. Средняя арифметическая выборки
2. Дисперсия (средний квадрат отклонений) S2
3. Стандартное отклонение или среднее квадратическое S
4. Коэффициент вариации V
5. Ошибка средней арифметической (в абсолютных единицах)
6. Относительная ошибка средней арифметической
7. Доверительный интервал t
Составляется вспомогательная таблица, в которой вычисляются средняя арифметическая (), отклонения от средней (), квадраты отклонений и суммы квадратов отклонений . 1. Хпрост. и Хвзвеш – это обобщенная характеристика вариационного ряда (изменчивость) - средняя арифметическая - средняя арифметическая простая, применяется при n – не более 10. взвешенная, применяется при n Правильность вычисления проверяется по равенству 0 в несгруппированном ряду и 0 в сгруппированном (если найдена без остатка). Средняя арифметическая – обобщённая характеристика всей совокупности в целом, но она не показывает степень изменчивости признака. Часто у двух вариационных рядов бывает одинакова, а отклонения индивидуальных значений признака отразличны, поэтому для характеристики степени изменчивости вариационного ряда находят показатели вариации (изменчивости) – дисперсию, стандартное отклонение и коэффициент вариации. 2. Затем рассчитывается дисперсия (S2 ), показатель, характеризующий среднюю меру изменчивости. где n –1 – число степеней свободы (мю) где f – частота класса 3. Стандартное отклонение ( . Размерность дисперсии и средней арифметической не совпадает: единица измерения первой – в квадрате, а второй – без квадрата. Поэтому, извлекая квадратный корень из , находят показатель варьирования – среднее квадратическое, или стандартное отклонение – это средняя ошибка отдельного наблюдения, взятого из данной совокупности. Измеряется она в тех же единицах, что и изучаемый признак, и вычисляется по формулам в несгруппированном вариационном ряду в сгруппированном вариационном ряду
4. Коэффициент вариации () - стандартное отклонение, выраженное в процентах к средней арифметической. (%)/ Коэффициент вариации является показателем однородности или выравненности объектов по изучаемому признаку. Изменчивость вариационного ряда считается: незначительной – при до 10%; средней – при значительной – при больше 20%. В селекции и семеноводстве используют коэффициент выравненности (величина дополняющая коэффициент вариации до 100 %).
В + V = 100 % В = 100 – V 5. Ошибка средней арифметической (). Средняя арифметическая выборочной совокупности () отличается от средней арифметической всей генеральной совокупности на величину ошибки , с которой определена средняя выборочной совокупности (). прямо пропорциональна стандартному отклонению (S) и обратно пропорциональна корню квадратному из числа наблюдений (n): Если вместо S подставить его значение (для несгруппированного вариационного ряда), то формула примет вид: Абсолютная ошибка () позволяет: а) установить величину случайной ошибки в опыте; б) оценить существенность различий между средними урожаями по вариантам; в) рассчитать доверительный интервал 6. Относительная ошибка средней арифметической (). Сопоставляя среднюю арифметическую с её ошибкой , можно получить представление о точности определения : Чем меньше числовое значение , тем точнее проведено наблюдение, т.е. с меньшей ошибкой определена . Таким образом, по значению относительной ошибки можно оценить точность определения средней арифметической. При значении показателя 1-2% - точность определения выборочной средней отличная, 2-3% - хорошая, 3-5% - вполне удовлетворительная, 5-7% - удовлетворительная, больше 7% - неудовлетворительная Раньше - использовали для оценки качества выполнения полевого опыта и считали, что если , больше 7-8 % то опыт нужно браковать. Но это не объективно т.к. относительная ошибка зависит от и чем больше , тем меньше при одном и том же числе наблюдений. 7. Доверительный интервал (). Величина даёт возможность вычислить пределы, в которых находится средняя генеральной совокупности, - доверительный интервал для средней. Границы доверительного интервала равны . Значение дано в приложении 2 для принятого уровня значимости (05 или 01) и числа степеней свободы n – 1.
Дата добавления: 2014-01-03; Просмотров: 550; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |