КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Адаптивные методы прогнозирования
Статистические методы прогнозирования Адаптивные методы используются в условиях сильной колеблемости уровней динамического ряда и позволяют при изучении тенденции учитывать степень влияния предыдущих уровней на последующие значения динамического ряда. К адаптивным методам относят: - методы скользящих и экспоненциальных средних, - метод гармонических весов, - методы авторегрессионных преобразований. Адаптивный метод относится к краткосрочному прогнозированию. Методы прогнозирования - экстраполяция тренда, регрессионно - корреляционный метод не всегда применимы. Тренд, регрессия описывают экономические процессы в среднем. Существуют такие нестационарные экономические процессы, математическое ожидание изменяется или экономический процесс описывается короткими динамическими рядами. Для увеличения надежности прогноза экономического развития в быстроизменяющихся условиях неполной информации возможно применение адаптивных моделей. Эти модели отражают текущие свойства динамического ряда и способны непрерывно учитывать эволюцию динамических характеристик, изучаемых процессов. Эти методы базируются на самокорреляционных моделях, которые учитывают результаты прогнозов, сделанных на предыдущем шаге. Модель постоянно впитывает новую информацию, приспосабливается к ней, поэтому отражает тенденцию развития, существующую в данный момент. Именно поэтому адаптивные модели особенно удачно используются при краткосрочном прогнозировании. Адаптивные методы позволяют учесть различную информационную ценность уровней временного ряда, а также степень устаревания данных. Начало адаптивному направлению в прогнозировании положила модель экспоненциального сглаживания. Например: Дан динамический ряд показателей хt. Модель можно записать следующим образом: (5.13) A, B – параметры модели, A оценивает информацию настоящего, B – прошлого. 0–A<1; А+В=1 . (5.14) Новый прогноз получается в результате корректировки предыдущего на 1 шаг. Для увеличения веса свежих наблюдений необходимо увеличить параметр адаптации А. Для сглаживания случайных отклонений уровней заданного динамического ряда параметр А необходимо снижать. Если эти 2 требования противоречат друг к другу, значит модель нуждается в оптимизации. Достигается это подбором параметра адаптации А: А=0,3 – принимают во всех случаях, но это оспаривается, для каждой модели параметр должен быть свой. (5.15) Каждый параметр адаптации А дает свою стандартную ошибку S. График с увеличением А увеличится и ст. от А. Экспоненциальное сглаживание можно представить как фильтр на вход которого в виде потока последовательно поступают члены исходного ряда, а на выходе формируются текущие значения экспоненциальной средней. Чем меньше А, тем больше средний возраст информации. Поэтому для конъюнктуры прогнозов А необходимо брать больше. . (5.16) Прогноз на один шаг вперед равен экспоненциальной средней предыдущего периода. , (5.17) . (5.18) Общая дисперсия связана с варьированием индивидуальных значений относительно экспоненциальной среды. ; ; ; (5.19) Разработано множество моделей адаптивного метода.
Дата добавления: 2014-01-03; Просмотров: 2648; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |