КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Диффузионное и кинетическое горение
Гомогенное и гетерогенное горение.
Исходя из рассмотренных примеров, в зависимости от агрегатного со-стояния смеси горючего и окислителя, т.е. от количества фаз в смеси, разли-чают: 1. Гомогенное горение газов и паров горючих веществ в среде газооб-разного окислителя. Таким образом, реакция горения протекает в системе, состоящей из одной фазы (агрегатного состояния). 2. Гетерогенное горение твердых горючих веществ в среде газообраз-ного окислителя. В этом случае реакция протекает на поверхности раздела фаз, в то время как гомогенная реакция идет во всем объеме. Это горение металлов, графита, т.е. практически нелетучих материалов. Многие газовые реакции имеют гомогенно-гетерогенную природу, когда возможность протекания гомогенной реакции обусловлена происхождением одновременно гетерогенной реакции. Горение всех жидких и многих твердых веществ, из которых выделяя-ются пары или газы (летучие вещества) протекает в газовой фазе. Твердая и жидкая фазы играют роль резервуаров реагирующих продуктов. Например, гетерогенная реакция самовозгорания угля переходит в го-могенную фазу горения летучих веществ. Коксовый остаток горит гетероген-но.
По степени подготовки горючей смеси различают диффузионное и ки-нетическое горение. Рассмотренные виды горения (кроме взрывчатки) относятся к диффу-зионному горению. Пламя, т.е. зона горения смеси горючего с воздухом, для обеспечения устойчивости должна постоянно подпитываться горючим и ки-слородом воздуха. Поступление горючего газа зависит только от скорости его подачи в зону горения. Скорость поступления горючей жидкости зависит от интенсивности ее испарения, т.е. от давления паров над поверхностью жидкости, а, следовательно, от температуры жидкости. Температурой вос-пламенения называется наименьшая температура жидкости, при которой пламя над ее поверхностью не погаснет. Горение твердых веществ отличается от горения газов наличием стадии разложения и газификации с последующим воспламенением летучих продук-тов пиролиза. Пиролиз – это нагрев органических веществ до высоких температур без доступа воздуха. При этом происходит разложение, или расщепление, сложных соединений на более простые (коксование угля, крекинг нефти, су-хая перегонка дерева). Поэтому сгорание твердого горючего вещества в про-дукт горения не сосредоточено только в зоне пламени, а имеет многостадий-ный характер. Нагрев твердой фазы вызывает разложение и выделение газов, которые воспламеняются и сгорают. Тепло от факела нагревает твердую фазу, вызы-вая ее газификацию и процесс повторяется, таким образом поддерживая го-рение. Модель горения твердого вещества предполагает наличие следующих фаз (рис. 17):
Рис. 17. Модель горения твердого вещества. - прогрева твердой фазы. У плавящихся веществ в этой зоне происхо-дит плавление. Толщина зоны зависит от температуры проводности вещест-ва; - пиролиза, или реакционной зоны в твердой фазе, в которой образу-ются газообразные горючие вещества; - предпламенной в газовой фазе, в которой образуется смесь с окисли-телем; - пламени, или реакционной зоны в газовой фазе, в которой превраще-ние продуктов пиролиза в газообразные продукты горения; - продуктов горения. Скорость подачи кислорода в зону горения зависит от его диффузии через продукт горения. В общем, поскольку скорость химической реакции в зоне горения в рассматриваемых видах горения зависти от скорости поступления реаги-рующих компонентов и поверхности пламени путем молекулярной или кине-тической диффузии, этот вид горения и называют диффузионным. Структура пламени диффузионного горения состоит из трех зон (рис.18): В 1 зоне находятся газы или пары. Горение в этой зоне не происходит. Температура не превышает 5000С. Происходит разложение, пиролиз летучих и нагрев до температуры самовоспламенения.
Рис. 18. Структура пламени. Во 2 зоне образуется смесь паров (газов) с кислородом воздуха и про-исходит неполное сгорание до СО с частичным восстановлением до углерода (мало кислорода): CnHm + O2 → CO + CO2 + Н2О; 2CO = CO + C. В 3 внешней зоне происходит полное сгорание продуктов второй зоны и наблюдается максимальная температура пламени: 2CO+O2=2CO2; C+O2=CO2. Высота пламени пропорциональна коэффициенту диффузии и скорости потока газов и обратно пропорциональна плотности газа. Все виды диффузионного горения присущи пожарам. Кинетическим горением называется горение заранее перемешанных горючего газа, пара или пыли с окислителем. В этом случае скорость горения зависит только от физико-химических свойств горючей смеси (теплопроводности, теплоемкости, турбулентности, концентрации веществ, давления и т.п.). Поэтому скорость горения резко возрастает. Такой вид горения присущ взрывам. В данном случае при поджигании горючей смеси в какой-либо точке фронт пламени движется от продуктов сгорания в свежую смесь. Таким об-разом, пламя при кинетическом горении чаще всего нестационарно (рис. 19).
Рис. 19. Схема распространения пламени в горючей смеси: - источник зажигания; - направления движе-ния фронта пламени. Хотя, если предварительно перемешать горючий газ с воздухом и подать в горелку, то при поджигании образуется стационарное пламя, при условии, что скорость подачи смеси будет равна скорости распространения пламени. Если скорость подачи газов увеличить, то пламя отрывается от горелки и может погаснуть. А если скорость уменьшить, то пламя втянется во внутрь горелки с возможным взрывом. По степени сгорания, т.е. полноты протекания реакции горения до ко-нечных продуктов, горение бывает полным и неполным. Так в зоне 2 (рис.18) горение неполное, т.к. недостаточно поступает ки-слород, который частично расходуется в 3 зоне, и образуются промежуточ-ные продукты. Последние догорают в 3 зоне, где кислорода больше, до пол-ного сгорания. Наличие сажи в дыму говорит о неполном горении. Другой пример: при недостатке кислорода углерод сгорает до угарного газа: 2C+O2=2СО. Если добавить O, то реакция идет до конца: 2СО+O2=2СО2. Скорость горения зависит от характера движения газов. Поэтому раз-личают ламинарное и турбулентное горение. Так, примером ламинарного горения может служить пламя свечи в не-подвижном воздухе. При ламинарном горении слои газов текут параллель-но, не завихряясь. Турбулентное горение – вихревое движение газов, при котором интен-сивно перемешиваются сгорающие газы, и фронт пламени размывается. Гра-ницей между этими видами служит критерий Рейнольдса, который характе-ризует соотношение между силами инерции и силами трения в потоке: , (4.1) где: u - скорость газового потока; n - кинетическая вязкость; l – характерный линейный размер. Число Рейнольдса, при котором происходит переход ламинарного по-граничного слоя в турбулентный называется критическим Reкр, Reкр ~ 2320. Турбулентность увеличивает скорость горения из-за более интенсивной передачи тепла от продуктов горения в свежую смесь.
Дата добавления: 2014-01-03; Просмотров: 3985; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |