Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Логические операции. Основные логические операции над высказываниями, используемыми в ЭВМ, включают отрицание, конъюнкцию


Основные логические операции над высказываниями, используемыми в ЭВМ, включают отрицание, конъюнкцию, дизъюнкции, стрелку Пирса и штрих Шеффера. Рассмотрим эти логические операции.

1. Отрицание (обозначается также ØX, ~X).

Отрицание (NOT, читается «не X») – это высказывание, которое истинно, если X ложно, и ложно, если X истинно.

2. Конъюнкция XY (X&Y, XÙY).

Конъюнкция XY (AND, логическое умножение, «X и Y») – это высказывание, которое истинно только в том случае, если X истинно и Y истинно.

3. Дизъюнкция X+Y (XÚY).

Дизъюнкция X+Y (OR, логическая сумма, «X или Y или оба») – это высказывание, которое ложно только в том случае, если X ложно и Y ложно.

4. Стрелка Пирса X ¯ Y.

Стрелка Пирса X ¯ Y (NOR (NOT OR), ИЛИ-НЕ) – это высказывание, которое истинно только в том случае, если X ложно и Y ложно.

5. Штрих Шеффера X | Y.

Штрих Шеффера X | Y (NAND (NOT AND), И-НЕ) – это высказывание, которое ложно только в том случае, если X истинно и Y истинно.

Определить значения логических операций при различных сочетаниях аргументов можно из таблицы истинности.

 

Таблица истинности для основных логических операций, используемых в ЭВМ

 

X Y XY X + Y X ¯ Y X | Y

 

Чтобы определить значение операции 0 + 1 в таблице истинности, необходимо на пересечении столбца X + Y (определяет операцию) и строки, где X = 0 и Y = 1 (так первый аргумент равен 0, а второй – 1), найти значение 1, которое и будет являться значением операции 0 + 1.

В алгебре высказываний существуют две нормальные формы: конъюнктивная нормальная форма (КНФ) и дизъюнктивная нормальная форма (ДНФ).

КНФ – это конъюнкция конечного числа дизъюнкций нескольких переменных или их отрицаний (произведение сумм). Например, формула X(Y + Z) находится в КНФ.

ДНФ – это дизъюнкция конечного числа конъюнкций нескольких переменных или их отрицаний (сумма произведений). Например, формула X + YZ находится в ДНФ.



Логические операции обладают свойствами, сформулированными в виде равносильных формул.

 

Снятие двойного отрицания (отрицание отрицания): =X. (6.1) Коммутативность: XY=YX. (6.2) X+Y=Y+X. (6.3) Ассоциативность: (XY)Z=X(YZ). (6.4) (X+Y)+Z=X+(Y+Z). (6.5) Дистрибутивность: X(Y+Z)=XY+XZ. (6.6) X+YZ=(X+Y)(X+Z). (6.7) Законы де Моргана: . (6.8) . (6.9) Идемпотентность: X+X=X. (6.10) X×X=X. (6.11) Закон противоречия: X×=0. (6.12) Закон «исключения третьего»: X+=1. (6.13) Свойства констант: X×1=X. (6.14) X×0=0. (6.15) X+1=1. (6.16) X+0=X. (6.17) Элементарные поглощения: X+XY=X. (6.18) X+Y=X+Y. (6.19) X(X+Y)=X. (6.20) X(+Y)=XY. (6.21) Преобразование стрелки Пирса: X¯Y=. (6.22) Преобразование штриха Шеффера: X | Y=. (6.23)

Порядок применения формул при преобразованиях - перечисленные формулы рекомендуется применять в следующем порядке:

1) преобразование стрелки Пирса (6.22) и штриха Шеффера (6.23);

2) законы де Моргана (6.8)-(6.9);

3) формулы дистрибутивности (6.6)-(6.7);

4) элементарные поглощения (6.18)-(6.21).

Обычно формула приводится к ДНФ, а затем отдельные слагаемые поглощаются.

Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой
<== предыдущая лекция | следующая лекция ==>
Логические основы ЭВМ | Логические функции

Дата добавления: 2014-01-03; Просмотров: 289; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:
studopedia.su - Студопедия (2013 - 2022) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.