Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

I. Способы представления переменного синусоидального тока и напряжения


Цепи однофазного переменного тока.

Лекция №4

Вопросы:

  1. Способы представления переменного тока
  2. Определение схем замещения по заданным векторным диаграммам токов и напряжений. - цепь, содержащая резистор и катушку - цепь, содержащая резистор и конденсатор - цепь, последовательного соединения резистора, конденсатора и катушки
  3. Расчёт электрического состояния цепи с последовательным соединением элементов резистор, конденсатор и катушка
  4. Расчёт цепи с параллельным соединением элементов R, L, C
  5. Мощность цепи синусоидального тока
  6. Коэффициент мощности и пути его улучшения

 

Однофазная цепь –это цепь, к которой подключена одна из фаз нейтрали.

 

 

1. Аналитический:

где – мгновенное значение тока;максимальное (амплитудное) значение тока (рис. 2.2); – угловая частота; – начальная фаза.

2. Символьный: - комплекс - . С математической точки зрения U – модуль вектора или комплекса, с физической точки зрения – это действующее значение напряжения, которое можно измерить вольтметром.

3. Векторная форма

Как известно из математики, синусоидальная функция аргумента определя­ется как проекция радиуса единичной длины на ось ординат, если этот ра­диус поворачивается против часовой стрелки на радиан. Синусоидальному току соответствует непрерывное вращение радиуса длиной с угловой скоростью против часовой стрелки. Синусоида в координатной плоскости () изображается (рис. 2.4) вращающимся вектором в декартовой системе (). Под углом , отсчитываемым от положительного направления оси абсцисс , строится вектор . Положительные начальные фазы при построении откладывают от оси против вращения часовой стрелки, отрицательные – по часовой стрелке. Проекция вектора на ось у в момент вре­мени = 0 равна мгновенному значению тока . Пусть, начиная с момента = 0, вектор вращается вокруг начала координат 0 с постоянной угловой скоростью в положительном направлении (про­тив движения часовой стрелки). К моменту времени вектор повернется относи­тельно оси на угол , и его проекция на ось будет равна мгно­венному значению функции . Таким образом, проекция вращающегося с угловой скоростью вектора на ось ординат в любой момент времени равна мгновен­ному значению синусоидальной функции в этот момент вре­мени.

Рис. 2.4

При представлении синусоидальной функции вращающимся вектором доста­точно изобразить его в координатах только в начальный момент вре­мени (рис. 2.5). Этот вектор представляет или отображает синусоиду, т.е. дает информацию о двух ее параметрах – амплитуде и начальной фазе . Векторы, изображающие синусоидальные функции, лишены физи­ческого содержания и имеют совсем другой смысл, чем векторы, определяющие модуль и направление физических величин в точке. Задача суммирования (вычитания) синусоид упрощается, если изобразить их векторами на плоскости, и сводится к операции сложения (вычита­ния) векторов, изображающих эти функции. В качестве примера рассмотрим сложение двух токов:



и .

 

 

На рис.2.5 токи и изображены в виде векто­ров на плоскости. Вектор, модуль которого равен , расположенный под углом к оси , является суммой этих векторов и изображает суммарную синусоиду

 

 

При расчетах электрических цепей синусоидального тока обычно оперируют не мгновенными, а дейст­вующими значениями токов и ЭДС. Поэтому складывают не векторы амплитуд, а век­торы действующих значений.

<== предыдущая лекция | следующая лекция ==>
Применение метода эквивалентного генератора для мостовой измерительной цепи | Резистор в цепи синусоидального тока

Дата добавления: 2014-01-03; Просмотров: 2199; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.