Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Рекурсивные подпрограммы

Рекурсия

Дек

Дональд Кнут1) ввел понятие усложненной очереди, которая называется дек (deque - D ouble- E nded QUE ue - двухконцевая очередь). В каждый момент времени у дека доступны как первый, так и последний элемент, причем добавлять и удалять элементы можно и в начале, и в конце дека. Таким образом, дек - это симметричная двусторонняя очередь.

Реализация дека при помощи массива ничем не отличается от реализации обычной очереди, а вот в терминах списков дек удобнее представлять двусвязным (разнонаправленным) линейным списком (см. лекцию 10).

Набор операций для дека аналогичен набору операций для очереди, с той лишь разницей, что добавление и удаление элементов можно производить и в конце, и в начале структуры.

В математике, да и не только в ней одной, часто встречаются объекты, определяемые при помощи самих себя. Они называются рекурсивными.

Например, рекурсивно определяется функция факториал:

0! =1n! = n*(n-1)!, для любого натурального n.

Другим примером рекурсивного определения может послужить определение арифметического выражения, приведенное в лекции 2.

В программировании рекурсивной называется подпрограмма, исполнение которой приводит к ее же повторному вызову.

Если подпрограмма просто вызывает сама себя, то такая рекурсия называется прямой. Например:

procedure rec1(k: byte); function rec2(k: byte): byte; begin begin...... rec1(k+1); x:= rec2(k+1);...... end; end;

Если же несколько подпрограмм вызывают друг друга, но эти вызовы "замкнуты в кольцо", то такая рекурсия называется косвенной.

В случае косвенной рекурсии возникает проблема с описанием подпрограмм: по правилу языка Pascal, нельзя использовать никакой объект раньше, чем он был описан. Следовательно, невозможно написать в программе:

procedure rec_А(k: byte);begin... reс_В(k+1);...end;procedure rec_В(k: byte);begin... rec_А(k+1);...end;

И здесь полезной оказывается возможность отрывать объявление подпрограммы от ее описания (см. лекцию 8). Например, для косвенной рекурсии в случае двух процедур, вызывающих друг друга (rec_A -> rec_B -> rec_A), нужно такое описание:

procedure rec_А(k: byte); forward;procedure rec_В(k: byte);begin... reс_А(k+1);...end; procedure rec_A;begin... rec_В(k+1);...end;
<== предыдущая лекция | следующая лекция ==>
Операции. Очередью называется динамическая структура, у которой в каждый момент времени доступны два элемента: первый и последний | Алгоритм решения
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 340; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.