Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несобственные интегралы





Понятие определенного интеграла вводилось и изучалось, во-первых, в предположении, что интегрируемая функция должна быть ограниченной на отрезке интегрирования, во-вторых, сам отрезок должен быть конечным. Если хотя бы одно из этих необходимых требований не выполнено, то определенный интеграл не существует.

Оказывается, существуют классы функций, для которых, хотя и нарушены указанные требования, можно говорить о существовании определенного интеграла. Естественно, при этом определенный интеграл понимается не в обычном смысле, а рассматривается некоторое его обобщение. Укажем два основных класса таких функций.

1. Несобственные интегралы первого рода.

Пусть функция f(x) определена и непрерывна на промежутке [a, ¥). Тогда она непрерывна на любом отрезке [a, b].

Если существует конечный предел , то этот предел называется несобственным интегралом1-го рода от функции f(x) на промежутке [a, ¥).

Обозначается:

Если этот предел существует и конечен, то говорят, что несобственный интеграл сходится.

Если предел не существует или бесконечен, то несобственный интеграл расходится.

 

Аналогичные рассуждения можно привести для несобственных интегралов вида:

Конечно, эти утверждения справедливы, если входящие в них интегралы существуют.

 

Пример. - не существует, следовательно, несобственный интеграл расходится.

 

Пример. - интеграл сходится

 

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл сходится, то тоже сходится и ³ .

 

Теорема: Если для всех х (x ³ a) выполняется условие и интеграл расходится, то тоже расходится.

Теорема: Если сходится, то сходится и интеграл .

В этом случае интеграл называется абсолютно сходящимся.

 

Пример. Рассмотрим несобственный интеграл 1-го рода функции на промежутке . При имеем:

.

Отсюда следует, что при несобственный интеграл расходится, а при он сходится, причем , .

Легко убедиться, что рассматриваемый несобственный интеграл расходится и при .

 

2. Несобственные интегралы второго рода.

Пусть , где и – некоторые числа, причем при (функция неограничена). Тогда .

Возьмем . Тогда и, следовательно, .

Несобственным интегралом 2-го рода функции на промежутке называют предел .

 

Если этот предел существует и конечен, то несобственный интеграл называют сходящимся, в противном случае – расходящимся.

Так же, как и выше, определяют интеграл от функции, неограниченной в окрестности точки .

 

Пример. Исследовать на сходимость несобственный интеграл 2-го рода функции , , на промежутке . При , имеем:



.

Из полученных соотношений следует, что если , то несобственный интеграл расходится; если же , то сходится, причем , .

Рассматриваемый несобственный интеграл расходится и при .

Наконец, если при , где , то полагают

.

 





Дата добавления: 2014-01-03; Просмотров: 1101; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.