Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Равносильные преобразования


Первым шагом при решении примеров на эквивалентные преобразования является переход к булевым операциям с помощью формул:

1)

2)

3) =

4) =

5) =

 

В справедливости вышеприведенных формул студентам предлагается убедиться самостоятельно путем построения таблиц истинности.

Следует иметь в виду, что буквы, использованные при записи основных равносильностей, могут означать как символы высказывательных переменных и константы, так и формулы алгебры высказываний, т.е. основная равносильность означает, в частности, что:

Полезными при решении примеров на упрощение формул являются законы полупоглощения:

 

Пример 4. С помощью равносильных преобразований упростить формулу

 

переход к булевым операциям

закон де Моргана и дистрибутивности

закон двойного отрицания

закон поглощения

 

Проверить правильность преобразований по таблицам истинности следует самостоятельно.

 

<== предыдущая лекция | следующая лекция ==>
Законы алгебры логики | Функции алгебры логики

Дата добавления: 2014-01-03; Просмотров: 278; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.